当前位置:首页 > 四年级 > 数学

四年级上册找规律(二)例题讲解

试卷简介

这份试卷主要讲解了整数的幂次方($a^n$)的个位数字变化规律及余数变化规律。通过观察不同个位数的整数的幂次方的个位数字和余数,可以发现一定的规律。例如,当$a$的个位数为0、1、5、6时,$a^n$的个位数不变;当$a$的个位数为4或9时,个位数按照特定的两个数字循环;当$a$的个位数为2、3、7、8时,个位数按照特定的四个数字循环。此外,试卷还介绍了如何利用这些规律解决实际问题。

所涉及的知识点

整数的幂次方($a^n$)的个位数和余数变化规律遵循特定的循环模式。

 第8讲 找规律(二)

  整数a与它本身的乘积,即a×a叫做这个数的平方,记作a2,即a2=a×a;同样,三个a的乘积叫做a的三次方,记作a3,即a3=a×a×a。一般地,n个a相乘,叫做a的n次方,记作an,即

  本讲主要讲an的个位数的变化规律,以及an除以某数所得余数的变化规律。

  因为积的个位数只与被乘数的个位数和乘数的个位数有关,所以an的个位数只与a的个位数有关,而a的个位数只有0,1,2,…,9共十种情况,故我们只需讨论这十种情况。

  为了找出一个整数a自乘n次后,乘积的个位数字的变化规律,我们列出下页的表格,看看a,a2,a3,a4,…的个位数字各是什么。

  从表看出,an的个位数字的变化规律可分为三类:

  (1)当a的个位数是0,1,5,6时,an的个位数仍然是0,1,5,6。

  (2)当a的个位数是4,9时,随着n的增大,an的个位数按每两个数为一周期循环出现。其中a的个位数是4时,按4,6的顺序循环出现;a的个位数是9时,按9,1的顺序循环出现。

  (3)当a的个位数是2,3,7,8时,随着n的增大,an的个位数按每四个数为一周期循环出现。其中a的个位数是2时,按2,4,8,6的顺序循环出现;a的个位数是3时,按3,9,7,1的顺序循环出现;当a的个位数是7时,按7,9,3,1的顺序循环出现;当a的个位数是8时,按8,4,2,6的顺序循环出现。

例1 求67999的个位数字。

  分析与解:因为67的个位数是7,所以67n的个位数随着n的增大,按7,9,3,1四个数的顺序循环出现。

  999÷4=249……3,

  所以67999的个位数字与73的个位数字相同,即67999的个位数字是3。

例2 求291+3291的个位数字。

分析与解:因为2n的个位数字按2,4,8,6四个数的顺序循环出现,91÷4=22……3,所以,291的个位数字与23的个位数字相同,等于8。

  类似地,3n的个位数字按3,9,7,1四个数的顺序循环出现,

  291÷4=72……3,

  所以3291与33的个位数相同,等于7。

  最后得到291+3291的个位数字与8+7的个位数字相同,等于5。

例3 求28128-2929的个位数字。

解:由128÷4=32知,28128的个位数与84的个位数相同,等于6。由29÷2=14……1知,2929的个位数与91的个位数相同,等于9。因为6<9,在减法中需向十位借位,所以所求个位数字为16-9=7。

例4 求下列各除法运算所得的余数:

  (1)7855÷5;

  (2)555÷3。

分析与解:(1)由55÷4=13……3知,7855的个位数与83的个位数相同,等于2,所以7855可分解为10×a+2。因为10×a能被5整除,所以7855除以5的余数是2。

  (2)因为a÷3的余数不仅仅与a的个位数有关,所以不能用求555的个位数的方法求解。为了寻找5n÷3的余数的规律,先将5的各次方除以3的余数列表如下:

  注意:表中除以3的余数并不需要计算出5n,然后再除以3去求,而是用上次的余数乘以5后,再除以3去求。比如,52除以3的余数是1,53除以3的余数与1×5=5除以3的余数相同。这是因为52=3×8+1,其中3×8能被3整除,而

  53=(3×8+1)×5=(3×8)×5+1×5,

  (3×8)×5能被3整除,所以53除以3的余数与1×5除以3的余数相同。

  由上表看出,5n除以3的余数,随着n的增大,按2,1的顺序循环出现。由55÷2=27……1知,555÷3的余数与51÷3的余数相同,等于2。

例5 某种细菌每小时分裂一次,每次1个细茵分裂成3个细菌。20时后,将这些细菌每7个分为一组,还剩下几个细菌?

分析与解:1时后有1×3=31(个)细菌,2时后有31×3=32(个)细菌……20时后,有320个细菌,所以本题相当于“求320÷7的余数”。

  由例4(2)的方法,将3的各次方除以7的余数列表如下:

  由上表看出,3n÷7的余数以六个数为周期循环出现。由20÷6=3……2知,320÷7的余数与32÷7的余数相同,等于2。所以最后还剩2个细菌。

  最后再说明一点,an÷b所得余数,随着n的增大,必然会出现周期性变化规律,因为所得余数必然小于b,所以在b个数以内必会重复出现。

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:27236 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握