当前位置:首页 > 中考 > 数学

2012中考数学二轮复习 相似三角形问题

试卷简介

这份试卷主要考察学生在几何图形中的动点问题、相似三角形的应用、以及抛物线的相关知识。题目涉及了动点P在三角形中的运动,相似三角形的判定条件,以及抛物线的性质和应用。通过这些题目,学生可以加深对几何图形和代数方程的理解,并能熟练掌握如何利用已知条件进行推理和计算。

所涉及的知识点

几何图形中的动点问题及相似三角形的应用。

动点问题1:相似三角形问题

例1:如图①,在△ABC中,AB=AC,BC=acm,∠B=30°.动点P以/s的速度从点B出发,沿折线B﹣A﹣C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2.已知y与x的函数图象如图②所示.请根据图中信息,解答下列问题:

(1)试判断△DOE的形状,并说明理由;

(2)当a为何值时,△DOE与△ABC相似?

例2:矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线=-x与BC边相交于D点.

(1)求点D的坐标;

(2)若抛物线y=ax 2-x经过点A,试确定此抛物线的表达式;

(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求符合条件的点P的坐标.

例3.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.

(1)求抛物线的解析式;

(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;

(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.

作业

1.如图,已知抛物线y=x 2-1与x轴交于A、B两点,与y轴交于点C.

(1)求A、B、C三点的坐标.

(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.

(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

2.如图,已知抛物线y=x 2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.

(1)填空:点C的坐标是___________,b=_______,c=_______;

(2)求线段QH的长(用含t的式子表示);

(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

3.已知,如图1,过点B(0,-1)作平行于x轴的直线l,抛物线y=x 2上的两点A、B的横坐标分别为-1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DF.

(1)求点A、B、F的坐标;

(2)求证:CF⊥DF;

(3)点P是抛物线y=x 2对称轴右侧图象上的一动点,过点P作PQ⊥OP交x轴于点Q,是否存在点P使得△OPQ与△CDF相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56035 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握