当前位置:首页 > 中考 > 数学

2013年钦州市中考数学试卷解析

试卷简介

这套试卷是广西钦州市2013年的中考数学试卷,包括选择题、填空题和解答题。选择题共12道,每题3分,总分36分;填空题共6道,每题3分,总分18分;解答题共8道,总分66分。内容涵盖实数、几何、代数、概率等多个数学领域。

所涉及的知识点

这套试卷主要考察了初中数学的基础知识和基本技能,包括实数运算、几何图形的性质、代数方程的解法、概率统计等内容。

广西钦州市2013年中考数学试卷

一、选择题(共12小题,每小题3分,共36分。在每小题给出的四个选项中只有一项是符合题意的。用2B铅笔把答题卡上对应题目的答案标号涂黑)

1.(3分)(2013•钦州)7的倒数是(  )

2.(3分)(2013•钦州)随着交通网络的不断完善.旅游业持续升温,据统计,在今年“五一”期间,某风景区接待游客403000人,这个数据用科学记数法表示为(  )

3.(3分)(2013•钦州)下列四个图形中,是三棱柱的平面展开图的是(  )

4.(3分)(2013•钦州)在下列实数中,无理数是(  )

5.(3分)(2013•钦州)已知⊙O1与⊙O2的半径分别为2cm和3cm,若O1O2=5cm.则⊙O1与⊙O2的位置关系是(  )

6.(3分)(2013•钦州)下列运算正确的是(  )

7.(3分)(2013•钦州)关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是(  )

8.(3分)(2013•钦州)下列说法错误的是(  )

9.(3分)(2013•钦州)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为(  )

10.(3分)(2013•钦州)等腰三角形的一个角是80°,则它顶角的度数是(  )

11.(3分)(2013•钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由甲A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为(  )

12.(3分)(2013•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是(  )

二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上)

13.(3分)(2013•钦州)比较大小:﹣1 < 2(填“>”或“<”)

14.(3分)(2013•钦州)当x= 2 时,分式无意义.

15.(3分)(2013•钦州)请写出一个图形经过一、三象限的正比例函数的解析式 y=x(答案不唯一). .

16.(3分)(2013•钦州)如图,DE是△ABC的中位线,则△ADE与△ABC的面积的比是 1:4 .

17.(3分)(2013•钦州)不等式组的解集是 3<x≤5 .

18.(3分)(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是 10 .

三、解答题(本大题共8分,满分66分,请将答案写在答题卡上,解答应写出文字说明或演算步骤)

19.(6分)(2013•钦州)计算:|﹣5|+(﹣1)2013+2sin30°﹣.

20.(6分)(2013•钦州)如图,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求证:梯形ABCD是等腰梯形.

21.(6分)(2013•钦州)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:

(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.

(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.

22.(12分)(2013•钦州)(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:

①所调查的七年级50名学生在这个月内做好事次数的平均数是 4.4 ,众数是 5 ,极差是 6 :

②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.

(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.

①用“树状图法”或“列表法”表示所有可能出现的结果;

②取出的两个小球上所写数字之和是偶数的概率是多少?

23.(7分)(2013•钦州)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.

(1)求这两个函数的解析式:

(2)求△ADC的面积.

24.(7分)(2013•钦州)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)

(1)求点B距水平面AE的高度BH;

(2)求广告牌CD的高度.

(测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)

25.(10分)(2013•钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.

(1)求⊙O的半径OD;

(2)求证:AE是⊙O的切线;

(3)求图中两部分阴影面积的和.

26.(12分)(2013•钦州)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.

(1)求点A的坐标和∠AOB的度数;

(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;

(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;

(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56318 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握