当前位置:首页 > 中考 > 数学

2014年中考数学试题分类汇编13 二次函数

试卷简介

这份试卷主要考察学生对二次函数的理解与应用,涵盖了二次函数的基本性质、图像特征、系数与图像的关系、二次函数与一元二次方程的关系等多个方面。通过选择题、填空题、解答题等多种题型,全面测试学生对二次函数相关知识点的掌握情况。

所涉及的知识点

二次函数的基本性质及其图像特征,包括顶点、对称轴、开口方向等,以及二次函数的系数与图像的关系。此外,还包括二次函数与一元二次方程的关联,以及二次函数在实际问题中的应用。

二次函数

一、选择题

1. ( 2014•广东,第10题3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(  )

2. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是(  )

3.(2014年四川资阳,第10题3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:

①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),

其中正确结论的个数是(  )

A. 4个 B. 3个 C. 2个 D. 1个

考点: 二次函数图象与系数的关系.

分析: 利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.

解答: 解:∵抛物线和x轴有两个交点,

∴b2﹣4ac>0,

∴4ac﹣b2<0,∴①正确;

∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,

∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,

∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,

∴4a+c>2b,∴②错误;

∵把(1,0)代入抛物线得:y=a+b+c<0,

∴2a+2b+2c<0,

∵b=2a,

∴3b,2c<0,∴③正确;

∵抛物线的对称轴是直线x=﹣1,

∴y=a﹣b+c的值最大,

即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,

∴am2+bm+b<a,

即m(am+b)+b<a,∴④正确;

即正确的有3个,

故选B.

点评: 此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.

4.(2014年天津市,第12 题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:

①b2﹣4ac>0;②abc<0;③m>2.

其中,正确结论的个数是(  )

  A. 0 B. 1 C. 2 D. 3

考点: 二次函数图象与系数的关系.

分析: 由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;

先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;

一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.

解答: 解:①∵二次函数y=ax2+bx+c与x轴有两个交点,

∴b2﹣4ac>0,故①正确;

②∵抛物线的开口向下,

∴a<0,

∵抛物线与y轴交于正半轴,

∴c>0,

∵对称轴x=﹣>0,

∴ab<0,

∵a<0,

∴b>0,

∴abc<0,故②正确;

③∵一元二次方程ax2+bx+c﹣m=0没有实数根,

∴y=ax2+bx+c和y=m没有交点,

由图可得,m>2,故③正确.

故选D.

点评: 本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.

5.(2014•新疆,第6题5分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是(  )

6.(2014•舟山,第10题3分)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为(  )

7.(2014•毕节地区,第11题3分)抛物线y=2x2,y=﹣2x2,共有的性质是( )

8.(2014•孝感,第12题3分)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:

①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.

其中正确结论的个数为(  )

9.(2014·台湾,第26题3分)已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图形通过(0,5)、(10,8)两点.若a<0,0<h<10,则h之值可能为下列何者?(  )

A.1 B.3 C.5 D.7

分析:先画出抛物线的大致图象,根据顶点式得到抛物线的对称轴为直线x=h,由于抛物线过(0,5)、(10,8)两点.若a<0,0<h<10,则点(0,5)到对称轴的距离大于点(10,8)到对称轴的距离,所以h﹣0>10﹣h,然后解不等式后进行判断.

解:∵抛物线的对称轴为直线x=h,

而(0,5)、(10,8)两点在抛物线上,

∴h﹣0>10﹣h,解得h>5.

故选D.

点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.

10.(2014·浙江金华,第9题4分)如图是二次函数的图象,使成立的x的取值范围是【 】

A.   B.    C.    D.或

【答案】D.

【解析】

试题分析:由图象可知,当时,或. 故选D.

考点:1.曲线上点的坐标与方程的关系;2.数形结合思想的应用

11.(2014•浙江宁波,第12题4分)已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为( )

12.(2014•菏泽第8题3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )

13.(2014•济宁,第8题3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是(  )

14.(2014年山东泰安,第17题3分)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是(  )

 A.BCD.

分析: 根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.

解:由图可知,m<﹣1,n=1,所以,m+n<0,

所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),

反比例函数y=的图象位于第二四象限,

纵观各选项,只有C选项图形符合.故选C.

点评:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.

15.(2014年山东泰安,第20题3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:

下列结论:

(1)ac<0;

(2)当x>1时,y的值随x值的增大而减小.

(3)3是方程ax2+(b﹣1)x+c=0的一个根;

(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.

其中正确的个数为(  )

 A.4个 B. 3个 C. 2个 D. 1个

分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.

解:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;

∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;

∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;

∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2=(b﹣1)x+c>0,故(4)正确.

故选B.

点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.

16.(2014•滨州,第9题3分)下列函数中,图象经过原点的是( )

二.填空题

1. ( 2014•安徽省,第12题5分)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= a(1+x)2 .

考点: 根据实际问题列二次函数关系式.

分析: 由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.

解答: 解:∵一月份新产品的研发资金为a元,

2月份起,每月新产品的研发资金与上月相比增长率都是x,

∴2月份研发资金为a×(1+x),

∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.

故填空答案:a(1+x)2.

点评: 此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.

2.(2014年云南,第16题3分)抛物线y=x2﹣2x+3的顶点坐标是   .

考点: 二次函数的性质.

专题: 计算题.

分析: 已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.

解答: 解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,

∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).

点评: 此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.

3.(2014•浙江湖州,第16题4分)已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是  .

分析:根据三角形的任意两边之和大于第三边判断出a最小为2,再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2,即不大于2.5,然后列出不等式求解即可.

解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,

∴a最小是2,∵y1<y2<y3,∴﹣<2.5,解得m>﹣.故答案为:m>﹣.

点评:本题考查了二次函数图象上点的坐标特征,三角形的三边关系,判断出a最小可以取2以及对称轴的位置是解题的关键.

4. (2014•株洲,第16题,3分)如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是 a<﹣5 .

5. (2014年江苏南京,第16题,2分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:

则当y<5时,x的取值范围是  .

考点:二次函数与不等式

分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.

解答:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,

所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.

点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.

6. (2014•扬州,第16题,3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为 0 .

(第3题图)

7.(2014•菏泽,第12题3分)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则= _______.

8. ( 2014•珠海,第9题4分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为 直线x=2 .

三.解答题

1. ( 2014•安徽省,第22题12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.

(1)请写出两个为“同簇二次函数”的函数;

(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.

考点: 二次函数的性质;二次函数的最值.

专题: 新定义.

分析: (1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.

(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.

解答: 解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,

当a=2,h=3,k=4时,

二次函数的关系式为y=2(x﹣3)2+4.

∵2>0,

∴该二次函数图象的开口向上.

当a=3,h=3,k=4时,

二次函数的关系式为y=3(x﹣3)2+4.

∵3>0,

∴该二次函数图象的开口向上.

∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,

∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.

∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.

(2)∵y1的图象经过点A(1,1),

∴2×12﹣4×m×1+2m2+1=1.

整理得:m2﹣2m+1=0.

解得:m1=m2=1.

∴y1=2x2﹣4x+3

=2(x﹣1)2+1.

∴y1+y2=2x2﹣4x+3+ax2+bx+5

=(a+2)x2+(b﹣4)x+8

∵y1+y2与y1为“同簇二次函数”,

∴y1+y2=(a+2)(x﹣1)2+1

=(a+2)x2﹣2(a+2)x+(a+2)+1.

其中a+2>0,即a>﹣2.

∴.

解得:.

∴函数y2的表达式为:y2=5x2﹣10x+5.

∴y2=5x2﹣10x+5

=5(x﹣1)2.

∴函数y2的图象的对称轴为x=1.

∵5>0,

∴函数y2的图象开口向上.

①当0≤x≤1时,

∵函数y2的图象开口向上,

∴y2随x的增大而减小.

∴当x=0时,y2取最大值,

最大值为5(0﹣1)2=5.

②当1<x≤3时,

∵函数y2的图象开口向上,

∴y2随x的增大而增大.

∴当x=3时,y2取最大值,

最大值为5(3﹣1)2=20.

综上所述:当0≤x≤3时,y2的最大值为20.

点评: 本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.

2. ( 2014•福建泉州,第22题9分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).

(1)写出该函数图象的对称轴;

(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?

3. ( 2014•福建泉州,第25题12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.

(1)已知:DE∥AC,DF∥BC.

①判断

四边形DECF一定是什么形状?

②裁剪

当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;

(2)折叠

请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.

4. ( 2014•广东,第25题9分)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).

(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;

(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;

(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.

5. ( 2014•珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.

(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为: y=x2﹣x ;

(2)如果四边形OHMN为平行四边形,求点D的坐标;

(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.

6. 2014•广西贺州,第26题12分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.

(1)求二次函数的解析式;

(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;

(3)当△FPM是等边三角形时,求P点的坐标.

7. (2014•广西玉林市、防城港市,第26题12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.

(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;

(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.

①求此抛物线的解析式;

②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.

8.(2014年四川资阳,第22题9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).

(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?

(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.

考点: 二次函数的应用;一元一次不等式组的应用.

分析: (1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;

(2)设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.

解答: 解:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,

由题意得,,

解不等式①得,x≥11,

解不等式②得,x≤15,

所以,不等式组的解集是11≤x≤15,

∵x为正整数,

∴x可取的值为11、12、13、14、15,

所以,该商家共有5种进货方案;

(2)设总利润为W元,

y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,

则W=(1760﹣y1)x1+(1700﹣y2)x2,

=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),

=1760x+20x2﹣1500x+10x2﹣800x+12000,

=30x2﹣540x+12000,

=30(x﹣9)2+9570,

当x>9时,W随x的增大而增大,

∵11≤x≤15,

∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),

答:采购空调15台时,获得总利润最大,最大利润值为10650元.

点评: 本题考查了二次函数的应用,一元一次不等式组的应用,(1)关键在于确定出两个不等关系,(2)难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.

9.(2014年四川资阳,第24题12分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.

(1)求抛物线的解析式;

(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;

(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.

考点: 二次函数综合题.

分析: (1)根据对称轴可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),根据待定系数法可得抛物线的解析式为y=﹣x2+2x+3.

(2)分三种情况:①当MA=MB时;②当AB=AM时;③当AB=BM时;三种情况讨论可得点M的坐标.

(3)平移后的三角形记为△PEF.根据待定系数法可得直线AB的解析式为y=﹣x+3.易得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.分二种情况:①当0<m≤时;②当<m<3时;讨论可得用m的代数式表示S.

解答: 解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则

解得.

故抛物线的解析式为y=﹣x2+2x+3.

(2)①当MA=MB时,M(0,0);

②当AB=AM时,M(0,﹣3);

③当AB=BM时,M(0,3+3)或M(0,3﹣3).

所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).

(3)平移后的三角形记为△PEF.

设直线AB的解析式为y=kx+b,则

解得.

则直线AB的解析式为y=﹣x+3.

△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,

易得直线EF的解析式为y=﹣x+3+m.

设直线AC的解析式为y=k′x+b′,则

解得.

则直线AC的解析式为y=﹣2x+6.

连结BE,直线BE交AC于G,则G(,3).

在△AOB沿x轴向右平移的过程中.

①当0<m≤时,如图1所示.

设PE交AB于K,EF交AC于M.

则BE=EK=m,PK=PA=3﹣m,

联立,

解得,

即点M(3﹣m,2m).

故S=S△PEF﹣S△PAK﹣S△AFM

=PE2﹣PK2﹣AF•h

=﹣(3﹣m)2﹣m•2m

=﹣m2+3m.

②当<m<3时,如图2所示.

设PE交AB于K,交AC于H.

因为BE=m,所以PK=PA=3﹣m,

又因为直线AC的解析式为y=﹣2x+6,

所以当x=m时,得y=6﹣2m,

所以点H(m,6﹣2m).

故S=S△PAH﹣S△PAK

=PA•PH﹣PA2

=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2

=m2﹣3m+.

综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.

点评: 考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,待定系数法求抛物线的解析式,待定系数法求直线的解析式,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.

10.(2014•温州,第21题10分)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).

(1)求该抛物线的解析式及顶点M的坐标.

(2)求△EMF与△BNE的面积之比.

11.(2014•舟山,第22题10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).

(1)根据上述数学模型计算:

①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?

②当x=5时,y=45,求k的值.

(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.

12.(2014•舟山,第24题12分)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.

(1)当m=时,求S的值.

(2)求S关于m(m≠2)的函数解析式.

(3)①若S=时,求的值;

②当m>2时,设=k,猜想k与m的数量关系并证明.

13.(2014年广东汕尾,第25题10分)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.

(1)直接写出A、D、C三点的坐标;

(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;

(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.

分析:(1)令y=0,解方程x2﹣x﹣3=0可得到A点和D点坐标;令x=0,求出y=﹣3,可确定C点坐标;

(2)根据抛物线的对称性,可知在在x轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x轴上方,存在两个点,这两个点分别到x轴的距离等于点C到x轴的距离;

(3)根据梯形定义确定点P,如图所示:①若BC∥AP1,确定梯形ABCP1.此时P1与D点重合,即可求得点P1的坐标;②若AB∥CP2,确定梯形ABCP2.先求出直线CP2的解析式,再联立抛物线与直线解析式求出点P2的坐标.

解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,

解得x1=﹣2,x2=4.当x=0,y=﹣3.

∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);

(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.

∵AD在x轴上,点M在抛物线上,

∴当△MAD的面积与△CAD的面积相等时,分两种情况:

①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,

∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);

②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,

∴M点坐标为(1+,3)或(1﹣,3).

综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);

(3)结论:存在.

如图所示,在抛物线上有两个点P满足题意:

①若BC∥AP1,此时梯形为ABCP1.

由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,

∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;

②若AB∥CP2,此时梯形为ABCP2.

∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,

∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,

∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,

∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,

∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).

∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.

综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).

点评: 本题是二次函数的综合题型,其中涉及到的知识点有抛物线与坐标轴的交点坐标求法,三角形的面积,梯形的判定.综合性较强,有一定难度.运用数形结合、分类讨论及方程思想是解题的关键.

14.(2014•毕节地区,第27题16分)如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).

(1)求抛物线的解析式;

(2)求直线Ac的解析式及B点坐标;

(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求P点的坐标,若不存在,请说明理由.

15.(2014•武汉2014•武汉,第29题10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:

已知该商品的进价为每件30元,设销售该商品的每天利润为y元.

(1)求出y与x的函数关系式;

(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?

(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.

16.(2014•武汉,第25题12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.

(1)直线AB总经过一个定点C,请直接出点C坐标;

(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;

(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.

17.(2014•襄阳,第26题12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

(1)填空:点A坐标为 (1,4) ;抛物线的解析式为 y=﹣(x﹣1)2+4 .

(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?

(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

18.(10分)(2014•孝感,第22题10分)已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.

(1)求k的取值范围;

(2)试说明x1<0,x2<0;

(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB﹣3,求k的值.

19.(2014•孝感,第25题12分)如图1,矩形ABCD的边AD在y轴上,抛物线y=x2﹣4x+3经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上.

(1)请直接写出下列各点的坐标:A (0,3) ,B (4,3) ,C (4,﹣1) ,D (0,﹣1) ;

(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2.

①当线段PH=2GH时,求点P的坐标;

②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值.

20.(2014•邵阳,第26题10分)在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.

(1)若m=2,n=1,求A、B两点的坐标;

(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;

(3)若m=2,△ABC是等腰三角形,求n的值.

21.(2014•浙江宁波,第23题10分)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.

(1)求二次函数的解析式;

(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;

(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.

22.(2014•四川自贡,第24题14分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.

(1)求抛物线的解析式;

(2)证明:△ABC为直角三角形;

(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.

23.(2014•浙江湖州,第23题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.

(1)若点A的坐标是(﹣4,4)

①求b,c的值;

②试判断四边形AOBD的形状,并说明理由;

(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.

分析:(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;

②求证AD=BO和AD∥BO即可判定四边形为平行四边形;

(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为c.

解:(1)

①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)

把A、C代入y═﹣x2+bx+c得, 得,解得;

②四边形AOBD是平行四边形;理由如下:

由①得抛物线的解析式为y═﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),

过D点作DE⊥AB于点E,则DE=OC=4,AE=2,

∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,

∴△AED≌△BCO,∴AD=BO.∠DAE=∠BCO,∴AD∥BO,

∴四边形AOBD是平行四边形.

(2)存在,点A的坐标可以是(﹣2,2)或(2,2)

要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,

∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,

又∵AB=AC+BC=3BC,∴OB=BC,

∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,

∵C点是抛物线与y轴交点,∴OC=c,

∴A点坐标为(c,c),∴顶点横坐标=c,b=c,

∵将A点代入可得c=﹣+c•c+c,

∴横坐标为±c,纵坐标为c即可,令c=2,

∴A点坐标可以为(2,2)或者(﹣2,2).

点评:本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.

24. (2014•湘潭,第25题) △ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,

(1)求证:△BDF∽△CEF;

(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;

(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.

(第1题图)

25. (2014•湘潭,第26题)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,

(1)求二次函数解析式;

(2)若=,求k;

(3)若以BC为直径的圆经过原点,求k.

(第2题图)

26. (2014•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.

(1)求a,k的值;

(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;

(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.

(第3题图)

27. (2014•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.

(1)求AD的长;

(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;

(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.

(第4题图)

28. (2014•株洲,第24题,10分)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.

(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;

(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;

(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.

(第5题图)

29. (2014年江苏南京,第24题)已知二次函数y=x2﹣2mx+m2+3(m是常数).

(1)求证:不论m为何值,该函数的图象与x轴没有公共点;

(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?

考点:二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用

分析:(1)求出根的判别式,即可得出答案;

(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.

(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,

∴方程x2﹣2mx+m2+3=0没有实数解,

即不论m为何值,该函数的图象与x轴没有公共点;

(2)解答:y=x2﹣2mx+m2+3=(x﹣m)2+3,

把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的 顶点坐标是(m,0),

因此,这个函数的图象与x轴只有一个公共点,

所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.

点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.

30. (2014•泰州,第24题,10分)某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.

(1)分别求yA、yB关于x的函数关系式;

(2)当A组材料的温度降至120℃时,B组材料的温度是多少?

(3)在0<x<40的什么时刻,两组材料温差最大?

(第7题图)

31. (2014•扬州,第27题,12分)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).

(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;

(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;

(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?

(第8题图)

32.(2014•呼和浩特,第25题12分)如图,已知直线l的解析式为y=x﹣1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,)三点.

(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;

(2)已知点 P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;

(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.

33.(2014•滨州,第23题9分)已知二次函数y=x2﹣4x+3.

(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;

(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.

新*课*标*第*一*网]

34.(2014•德州,第24题12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.

(1)求抛物线的解析式;

(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

35.(2014•菏泽,第21题10分)在平面直角坐标系xOy中,已知抛物线y=x2﹣2mx+m2﹣9.

(1)求证:无论m为何值,该抛物线与x轴总有两个交点;

(2)该抛物线与x轴交于A,B两点,点A在点B的左侧,且OA<OB,与y轴的交点坐标为(0,﹣5),求此抛物线的解析式;

(3)在(2)的条件下,抛物线的对称轴与x轴的交点为N,若点M是线段AN上的任意一点,过点M作直线MC⊥x轴,交抛物线于点C,记点C关于抛物线对称轴的对称点为D,点P是线段MC上一点,且满足MP=MC,连结CD,PD,作PE⊥PD交x轴于点E,问是否存在这样的点E,使得PE=PD?若存在,求出点E的坐标;若不存在,请说明理由.

36.(2014•济宁,第22题11分)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;

(1)求该抛物线的解析式;

(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;

(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

37.(2014年山东泰安,第29题)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).

(1)求二次函数的表达式;

(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;

(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.

分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;

(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解;

(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.

解:(1)由题设可知A(0,1),B(﹣3,),

根据题意得:,解得:,

则二次函数的解析式是:y=﹣﹣x+1;

(2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0).

∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,

则当x=﹣时,MN的最大值为;

(3)连接MN、BN、BM与NC互相垂直平分,

即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,

即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1,

故当N(﹣1,4)时,MN和NC互相垂直平分.

点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用二次函数的性质可以解决实际问题中求最大值或最小值问题.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56384 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握