当前位置:首页 > 中考 > 数学

2014年枣庄市中考数学试卷及答案解析

试卷简介

这份试卷是2014年山东省枣庄市中考数学试卷,包含了选择题、填空题和解答题。选择题部分涵盖了基础运算、几何图形的性质、概率统计等知识点;填空题涉及几何图形的构造、方程的解、比例关系等内容;解答题包括基本计算、统计分析、几何证明及应用、函数图像分析等综合问题。

所涉及的知识点

- 基础运算:算术平方根、科学记数法。 - 几何图形:菱形、正方形、三角形、圆、轴对称图形。 - 代数:方程、比例关系。 - 函数:一次函数、反比例函数、二次函数。 - 统计与概率:数据统计、概率计算。 - 几何证明:几何图形的性质及证明。 - 应用题:实际问题中的函数与几何结合的应用。

山东省枣庄市2014年中考数学试卷

一、选择题(共12小题,每小题3分,满分36分)

1.(3分)(2014•枣庄)2的算术平方根是( )

2.(3分)(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万名观众提供安保.将14000000000用科学记数法表示为( )

3.(3分)(2014•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为( )

4.(3分)(2014•枣庄)下列说法正确的是( )

5.(3分)(2014•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则两圆的位置关系是( )

6.(3分)(2014•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )

7.(3分)(2014•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( )

8.(3分)(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是( )

9.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )

10.(3分)(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是( )

11.(3分)(2014•枣庄)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:

则该二次函数图象的对称轴为( )

12.(3分)(2014•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为( )

二、填空题(共6小题,每小题4,满分24分)

13.(4分)(2014•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 3 种.

14.(4分)(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为 .

15.(4分)(2014•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为 .

16.(4分)(2014•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为 4﹣π cm2.

17.(4分)(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是 .

18.(4分)(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为 (3+3) cm.

三、解答题(共7小题,满分60分)

19.(8分)(2014•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0

(2)化简:(﹣)÷.

20.(8分)(2014•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

根据以上信息解答下列问题:

(1)求实验总次数,并补全条形统计图;

(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?

(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.

21.(8分)(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.

(1)求B点到OP的距离;

(2)求滑动支架的长.

(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

22.(8分)(2014•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.

(1)求证:△BOE≌△DOF;

(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.

23.(8分)(2014•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.

(1)求OD的长;

(2)求CD的长.

24.(10分)(2014•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.

(1)求一次函数与反比例函数的解析式;

(2)求四边形OCBD的面积.

25.(10分)(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).

(1)求∠OBC的度数;

(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;

(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56487 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握