湖南省湘潭市2014年中考数学试卷
一、选择题
1.(3分)(2014•湘潭)下列各数中是无理数的是( )
2.(3分)(2014•湘潭)下列计算正确的是( )
3.(3分)(2014•湘潭)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=( )米.
4.(3分)(2014•湘潭)分式方程的解为( )
5.(3分)(2014•湘潭)如图,所给三视图的几何体是( )
6.(3分)(2014•湘潭)式子有意义,则x的取值范围是( )
7.(3分)(2014•湘潭)以下四个命题正确的是( )
8.(3分)(2014•湘潭)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=( )
二、填空题
9.(3分)(2014•湘潭)﹣3的相反数是 3 .
10.(3分)(2014•湘潭)分解因式:ax﹣a= a(x﹣1) .
11.(3分)(2014•湘潭)未测试两种电子表的走时误差,做了如下统计
则这两种电子表走时稳定的是 甲 .
12.(3分)(2014•湘潭)计算:()2﹣|﹣2|= 1 .
13.(3分)(2014•湘潭)如图,直线a、b被直线c所截,若满足 ∠1=∠2 ,则a、b平行.
14.(3分)(2014•湘潭)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA= 4 .
15.(3分)(2014•湘潭)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为 2x+56=589﹣x .
16.(3分)(2014•湘潭)如图,按此规律,第6行最后一个数字是 16 ,第 672 行最后一个数是2014.
三、综合解答题
17.(2014•湘潭)在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)B点关于y轴的对称点坐标为 (﹣3,2) ;
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,A1的坐标为 (﹣2,3) .
18.(2014•湘潭)先化简,在求值:(+)÷,其中x=2.
19.(2014•湘潭)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)
20.(2014•湘潭)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.
(1)求证:△EDF≌△CBF;
(2)求∠EBC.
21.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱,说明理由.
22.(2014•湘潭)有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?
23.(2014•湘潭)从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:
(1)参加调查的学生有 200 人;
(2)请将条形统计图补全;
(3)请估计全校上网不超过7小时的学生人数.
24.(2014•湘潭)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.
(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;
(2)直线经过A(2,3),且与y=x+3垂直,求解析式.
25.(2014•湘潭)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,
(1)求证:△BDF∽△CEF;
(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;
(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.
26.(2014•湘潭)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,
(1)求二次函数解析式;
(2)若=,求k;
(3)若以BC为直径的圆经过原点,求k.