当前位置:首页 > 中考 > 数学

2014年陕西省中考数学试卷及答案解析

试卷简介

这份试卷是2014年陕西省中考数学试卷,包含选择题、填空题和解答题。选择题部分覆盖了多个知识点,包括算术平方根、几何体的三视图、一次函数图像、概率、不等式组、统计学(平均数和众数)、平行线性质、一元二次方程、菱形的性质、二次函数图象与系数的关系。填空题涉及负整数指数幂、因式分解、正五边形对称轴、计算器三角函数计算、旋转性质、反比例函数、四边形面积计算等。解答题则涵盖了分式化简求值、全等三角形证明、概率问题、切线性质、抛物线平移、等腰三角形构造等。

所涉及的知识点

这份数学试卷全面覆盖了初中数学的基础知识和解题技巧,从基本的算术平方根、几何图形的性质、函数图像的分析到复杂的问题解决策略,例如概率计算、不等式组、全等三角形证明和抛物线平移等。

2014年陕西省中考数学试卷

一、选择题(共10小题,每小题3分,共30分)

1.(3分)(2014年陕西省)4的算术平方根是(  )

  A. ﹣2 B. 2 C. ±2 D. 16

考点: 算术平方根.菁优网版权所有

分析: 根据算术平方根的定义进行解答即可.

解答: 解:∵22=4,

∴4的算术平方根是2.

故选B.

点评: 本题考查了算术平方根的定义,熟记定义是解题的关键.

2.(3分)(2014年陕西省)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是(  )

  A. B. C. D.

考点: 简单几何体的三视图;截一个几何体.菁优网版权所有

分析: 根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,得到结果.

解答: 解:左视图从图形的左边向右边看,

看到一个正方形的面,

在面上有一条实线,

故选:A.

点评: 本题考查空间图形的三视图,本题是一个基础题,正确把握三视图观察角度是解题关键.

3.(3分)(2014年陕西省)若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是(  )

  A. B. ﹣ C. 1 D. ﹣1

考点: 一次函数图象上点的坐标特征.菁优网版权所有

分析: 利用待定系数法代入正比例函数y=﹣x可得m的值.

解答: 解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,

∴m=﹣×(﹣2)=1,

故选:C.

点评: 此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.

4.(3分)(2014年陕西省)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是(  )

  A. B. C. D.

考点: 概率公式.菁优网版权所有

分析: 由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.

解答: 解:∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,

∴小军能一次打开该旅行箱的概率是:.

故选A.

点评: 此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.

5.(3分)(2014年陕西省)把不等式组的解集表示在数轴上,正确的是(  )

  A. B. C. D.

考点: 在数轴上表示不等式的解集;解一元一次不等式组.菁优网版权所有

分析: 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可

解答: 解:解得,

故选:D.

点评: 把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.

6.(3分)(2014年陕西省)某区10名学生参加市级汉字听写大赛,他们得分情况如下表:

人数 3 4 2 1

分数 80 85 90 95

那么这10名学生所得分数的平均数和众数分别是(  )

  A. 85和82.5 B. 85.5和85 C. 85和85 D. 85.5和80

考点: 众数;中位数.菁优网版权所有

分析: 根据众数及平均数的定义,即可得出答案.

解答: 解:这组数据中85出现的次数最多,故众数是85;

平均数=(80×3+085×4+90×2+95×1)=85.

故选B.

点评: 本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.

7.(3分)(2014年陕西省)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为(  )

  A. 17° B. 62° C. 63° D. 73°

考点: 平行线的性质.菁优网版权所有

分析: 首先根据两直线平行,内错角相等可得∠ABC=∠C=28°,再根据三角形内角与外角的性质可得∠AEC=∠A+∠ABC.

解答: 解:∵AB∥CD,

∴∠ABC=∠C=28°,

∵∠A=45°,

∴∠AEC=∠A+∠ABC=28°+45°=73°,

故选:D.

点评: 此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,内错角相等,三角形的外角等于与它不相邻的两个内角之和.

8.(3分)(2014年陕西省)若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为(  )

  A. 1或4 B. ﹣1或﹣4 C. ﹣1或4 D. 1或﹣4

考点: 一元二次方程的解.菁优网版权所有

分析: 将x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0,再解关于a的一元二次方程即可.

解答: 解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,

∴4+5a+a2=0,

∴(a+1)(a+4)=0,

解得a1=﹣1,a2=﹣4,

故选B.

点评: 本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可.

9.(3分)(2014年陕西省)如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为(  )

  A. 4 B. C. D. 5

考点: 菱形的性质.菁优网版权所有

分析: 连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.

解答: 解:连接BD,

∵四边形ABCD是菱形,

∴AC⊥BD,AO=AC,BD=2BO,

∴∠AOB=90°,

∵AC=6,

∴AO=3,

∴B0==4,

∴DB=8,

∴菱形ABCD的面积是×AC•DB=×6×8=24,

∴BC•AE=24,

AE=,

故选:C.

点评: 此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.

10.(3分)(2014年陕西省)二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是(  )

  A. c>﹣1 B. b>0 C. 2a+b≠0 D. 9a+c>3b

考点: 二次函数图象与系数的关系.菁优网版权所有

专题: 数形结合.

分析: 由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;由于抛物线过点(﹣2,0)、(4,0),根据抛物线的对称性得到抛物线对称轴为直线x=﹣=1,则2a+b=0;由于当x=﹣3时,y<0,所以9a﹣3b+c>0,即9a+c>3b.

解答: 解:∵抛物线与y轴的交点在点(0,﹣1)的下方.

∴c<﹣1;

∵抛物线开口向上,

∴a>0,

∵抛物线的对称轴在y轴的右侧,

∴x=﹣>0,

∴b<0;

∵抛物线过点(﹣2,0)、(4,0),

∴抛物线对称轴为直线x=﹣=1,

∴2a+b=0;

∵当x=﹣3时,y<0,

∴9a﹣3b+c>0,

即9a+c>3b.

故选D.

点评: 本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.

二、填空题(共2小题,每小题3分,共18分)

11.(3分)(2014年陕西省)计算:= 9 .

考点: 负整数指数幂.菁优网版权所有

专题: 计算题.

分析: 根据负整数指数幂的运算法则进行计算即可.

解答: 解:原式===9.

故答案为:9.

点评: 本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.

12.(3分)(2014年陕西省)因式分解:m(x﹣y)+n(x﹣y)= (x﹣y)(m+n) .

考点: 因式分解-提公因式法.菁优网版权所有

分析: 直接提取公因式(x﹣y),进而得出答案.

解答: 解:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n).

故答案为:(x﹣y)(m+n).

点评: 此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.

请从以下两个小题中任选一个作答,若多选,则按所选做的第一题计分.

13.(3分)(2014年陕西省)一个正五边形的对称轴共有 5 条.

考点: 轴对称的性质.菁优网版权所有

分析: 过正五边形的五个顶点作对边的垂线,可得对称轴.

解答: 解:如图,

正五边形的对称轴共有5条.

故答案为:5.

点评: 本题考查了轴对称的性质,熟记正五边形的对称性是解题的关键.

14.(2014年陕西省)用科学计算器计算:+3tan56°≈ 10.02 (结果精确到0.01)

考点: 计算器—三角函数;计算器—数的开方.菁优网版权所有

分析: 先用计算器求出′、tan56°的值,再计算加减运算.

解答: 解:≈5.5678,tan56°≈1.4826,

则+3tan56°≈5.5678+3×1.4826≈10.02

故答案是:10.02.

点评: 本题考查了计算器的使用,要注意此题是精确到0.01.

15.(3分)(2014年陕西省)如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为 2﹣ .

考点: 旋转的性质.菁优网版权所有

分析: 利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.

解答: 解:由题意可得出:∠BDC=45°,∠DA′E=90°,

∴∠DEA′=45°,

∴A′D=A′E,

∵在正方形ABCD中,AD=1,

∴AB=A′B=1,

∴BD=,

∴A′D=﹣1,

∴在Rt△DA′E中,

DE==2﹣.

故答案为:2﹣.

点评: 此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.

16.(3分)(2014年陕西省)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为 y= .

考点: 反比例函数图象上点的坐标特征.菁优网版权所有

分析: 设这个反比例函数的表达式为y=,将P1(x1,y1),P2(x2,y2)代入得x1•y1=x2•y2=k,所以=,=,由=+,得(x2﹣x1)=,

将x2=x1+2代入,求出k=4,得出这个反比例函数的表达式为y=.

解答: 解:设这个反比例函数的表达式为y=,

∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,

∴x1•y1=x2•y2=k,

∴=,=,

∵=+,

∴=+,

∴(x2﹣x1)=,

∵x2=x1+2,

∴×2=,

∴k=4,

∴这个反比例函数的表达式为y=.

故答案为y=.

点评: 本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.

17.(3分)(2014年陕西省)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是 4 .

考点: 垂径定理;圆周角定理.菁优网版权所有

专题: 计算题.

分析: 过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.

解答: 解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,

∵∠AMB=45°,

∴∠AOB=2∠AMB=90°,

∴△OAB为等腰直角三角形,

∴AB=OA=2,

∵S四边形MANB=S△MAB+S△NAB,

∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,

即M点运动到D点,N点运动到E点,

此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.

故答案为4.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.

四、解答题(共9小题,计72分)

18.(5分)(2014年陕西省)先化简,再求值:﹣,其中x=﹣.

考点: 分式的化简求值.菁优网版权所有

专题: 计算题.

分析: 原式通分并利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.

解答: 解:原式=﹣

=

=,

当x=﹣时,原式==.

点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

19.(6分)(2014年陕西省)如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.

求证:AB=BF.

考点: 全等三角形的判定与性质.菁优网版权所有

专题: 证明题.

分析: 根据EF⊥AC,得∠F+∠C=90°,再由已知得∠A=∠F,从而AAS证明△FBD≌△ABC,则AB=BF.

解答: 证明:∵EF⊥AC,]

分析: (1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小英和母亲随机各摸球一次,均摸出白球的情况,再利用概率公式即可求得答案;

(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,然后利用概率公式求解即可求得答案.

解答: 解:(1)画树状图得:

∵共有16种等可能的结果,小英和母亲随机各摸球一次,均摸出白球的只有1种情况,

∴小英和母亲随机各摸球一次,均摸出白球的概率是:;

(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,

∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.

点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

24.(8分)(2014年陕西省)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.

(1)求证:AD平分∠BAC;

(2)求AC的长.

考点: 切线的性质;相似三角形的判定与性质.菁优网版权所有

分析: (1)首先连接OD,由BD是⊙O的切线,AC⊥BD,易证得OD∥AC,继而可证得AD平分∠BAC;

(2)由OD∥AC,易证得△BOD∽△BAC,然后由相似三角形的对应边成比例,求得AC的长.

解答: (1)证明:连接OD,

∵BD是⊙O的切线,

∴OD⊥BD,

∵AC⊥BD,

∴OD∥AC,

∴∠2=∠3,

∵OA=OD,

∴∠1=∠3,

∴∠1=∠2,

即AD平分∠BAC;

(2)解:∵OD∥AC,

∴△BOD∽△BAC,

∴,

∴,

解得:AC=.

点评: 此题考查了切线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

25.(10分)(2014年陕西省)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.

(1)求抛物线C的表达式;

(2)求点M的坐标;

(3)将抛物线C平移到C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?

版权所有

分析: (1)直接把A(﹣3,0)和B(0,3)两点代入抛物线y=﹣x2+bx+c,求出b,c的值即可;

(2)根据(1)中抛物线的解析式可得出其顶点坐标;

(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.

解答: 解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,

∴,解得,

故此抛物线的解析式为:y=﹣x2﹣2x+3;

(2)∵由(1)知抛物线的解析式为:y=﹣x2﹣2x+3,

∴当x=﹣=﹣=﹣1时,y=4,

∴M(﹣1,4).

(3)由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,

∴MN∥M′N′且MN=M′N′.

∴MN•NN′=16,

∴NN′=4.

i)当M、N、M′、N′为顶点的平行四边形是▱MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;

ii)当M、N、M′、N′为顶点的平行四边形是▱MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.

∴上述的四种平移,均可得到符合条件的抛物线C′.

点评: 本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第(3)问需要分类讨论,避免漏解.

26.(12分)(2014年陕西省)问题探究

(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;

(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;

问题解决

(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.

考点: 圆的综合题;全等三角形的判定与性质;等边三角形的性质;勾股定理;三角形中位线定理;矩形的性质;正方形的判定与性质;直线与圆的位置关系;特殊角的三角函数值.菁优网版权所有

专题: 压轴题;存在型.

分析: (1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.

(2)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.

(3)要满足∠AMB=60°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.

解答: 解:(1)①作AD的垂直平分线交BC于点P,如图①,

则PA=PD.

∴△PAD是等腰三角形.

∵四边形ABCD是矩形,

∴AB=DC,∠B=∠C=90°.

∵PA=PD,AB=DC,

∴Rt△ABP≌Rt△DCP(HL).

∴BP=CP.

∵BC=4,

∴BP=CP=2.

②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,.

则DA=DP′.

∴△P′AD是等腰三角形.

∵四边形ABCD是矩形,

∴AD=BC,AB=DC,∠C=90°.

∵AB=3,BC=4,

∴DC=3,DP′=4.

∴CP′==.

∴BP′=4﹣.

③点A为圆心,AD为半径画弧,交BC于点P″,如图①,

则AD=AP″.

∴△P″AD是等腰三角形.

同理可得:BP″=.

综上所述:在等腰三角形△ADP中,

若PA=PD,则BP=2;

若DP=DA,则BP=4﹣;

若AP=AD,则BP=.

(2)∵E、F分别为边AB、AC的中点,

∴EF∥BC,EF=BC.

∵BC=12,

∴EF=6.

以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.

∵AD⊥BC,AD=6,

∴EF与BC之间的距离为3.

∴OQ=3

∴OQ=OE=3.

∴⊙O与BC相切,切点为Q.

∵EF为⊙O的直径,

∴∠EQF=90°.

过点E作EG⊥BC,垂足为G,如图②.

∵EG⊥BC,OQ⊥BC,

∴EG∥OQ.

∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,

∴四边形OEGQ是正方形.

∴GQ=EO=3,EG=OQ=3.

∵∠B=60°,∠EGB=90°,EG=3,

∴BG=.

∴BQ=GQ+BG=3+.

∴当∠EQF=90°时,BQ的长为3+.

(3)在线段CD上存在点M,使∠AMB=60°.

理由如下:

以AB为边,在AB的右侧作等边三角形ABG,

作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.

设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,

过点O作OH⊥CD,垂足为H,如图③.

则⊙O是△ABG的外接圆,

∵△ABG是等边三角形,GP⊥AB,

∴AP=PB=AB.

∵AB=270,

∴AP=135.

∵ED=285,

∴OH=285﹣135=150.

∵△ABG是等边三角形,AK⊥BG,

∴∠BAK=∠GAK=30°.

∴OP=AP•tan30°

=135×

=45.

∴OA=2OP=90.

∴OH<OA.

∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.

∴∠AMB=∠AGB=60°,OM=OA=90..

∵OH⊥CD,OH=150,OM=90,

∴HM=

=

=30.

∵AE=400,OP=45,

∴DH=400﹣45.

若点M在点H的左边,则DM=DH+HM=400﹣45+30.

∵400﹣45+30>340,

∴DM>CD.

∴点M不在线段CD上,应舍去.

若点M在点H的右边,则DM=DH﹣HM=400﹣45﹣30.

∵400﹣45﹣30<340,

∴DM<CD.

∴点M在线段CD上.

综上所述:在线段CD上存在唯一的点M,使∠AMB=60°,

此时DM的长为(400﹣45﹣30)米.

点评: 本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56543 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握