当前位置:首页 > 中考 > 数学

精品解析:2023年山东省潍坊市中考数学真题(原卷版)

试卷简介

这套试卷是2023年潍坊市初中学业水平考试的数学试题。试卷分为两大部分:选择题和非选择题。选择题部分包含单项选择题和多项选择题,共计44分;非选择题部分包括填空题和解答题,共计106分。试卷内容涵盖了实数、几何图形、函数、概率、代数等多个数学知识点,旨在全面考察学生的数学知识和解题能力。

所涉及的知识点

这套试卷主要考察了实数、几何图形、函数、概率、代数等多个数学领域的基础知识和应用能力。通过不同类型的题目,全面检验学生对这些知识点的理解和运用。

2023年潍坊市初中学业水平考试

数学试题

注意事项:

1.本试题满分150分,考试时间120分钟;

2.答卷前,请将试卷和答题纸上的项目填涂清楚;

3.请在答题纸相应位置作答,不要超出答题区域,不要答错位置.

第I卷(选择题共44分)

一、单项选择题(共6小题,每小题4分,共24分.每小题的四个选项中只有一项正确)

1. 在实数1,-1,0,中,最大的数是( )

A. 1 B. -1 C. 0 D.

2. 下列图形由正多边形和圆弧组成,其中既是轴对称图形又是中心对称图形的是( )

A. B. C. D.

3. 实数a,b,c在数轴上对应的点如图所示,下列判断正确的是( )

A. B. C. D.

4. 在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中,卯的俯视图是( )

A. B. C. D.

5. 如图,在直角坐标系中,一次函数与反比例函数的图象交于A,B两点,下列结论正确的是( )

A. 当时, B. 当时,

C. 当时, D. 当时,

6. 如图,在直角坐标系中,菱形顶点A的坐标为,.将菱形沿x轴向右平移1个单位长度,再沿y轴向下平移1个单位长度,得到菱形,其中点的坐标为( )

A. B. C. D.

二、多项选择题(共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,有错选的得0分)

7. 下列运算正确的是( )

A. B. C. D.

8. 下列命题正确的是( )

A. 在一个三角形中至少有两个锐角

B. 在圆中,垂直于弦的直径平分弦

C. 如果两个角互余,那么它们的补角也互余

D. 两条直线被第三条直线所截,同位角一定相等

9. 已知抛物线经过点,则下列结论正确的是( )

A. 拋物线的开口向下

B. 拋物线对称轴是

C. 拋物线与轴有两个交点

D. 当时,关于的一元二次方程有实根

10. 发动机的曲柄连杆将直线运动转化为圆周运动,图①是发动机的实物剖面图,图②是其示意图.图②中,点A在直线l上往复运动,推动点B做圆周运动形成,与表示曲柄连杆的两直杆,点C、D是直线l与的交点;当点A运动到E时,点B到达C;当点A运动到F时,点B到达D.若,,则下列结论正确的是( )

A. B.

C. 当与相切时, D. 当时,

第II卷(非选择题共106分)

三、填空题(共4小题,每小题4分,共16分.只写最后结果)

11. 从、,中任意选择两个数,分别填在算式里面的“□”与“○”中,计算该算式的结果是______.(只需写出一种结果)

12. 用与教材中相同型号计算器,依次按键 ,显示结果为 .借助显示结果,可以将一元二次方程的正数解近似表示为_____.(精确到)

13. 投掷两枚骰子,朝上一面的点数之和为7的概率是_____.

14. 在《数书九章》(宋·秦九韶)中记载了一个测量塔高的问题:如图所示,表示塔的高度,表示竹竿顶端到地面的高度,表示人眼到地面的高度,、、在同一平面内,点A、C、E在一条水平直线上.已知米,米,米,米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为______米.

四、解答题(共8小题,共90分.请写出必要的文字说明,证明过程或演算步骤)

15. (1)化简:

(2)利用数轴,确定不等式组的解集.

16. 如图,在中,平分,,重足为点E,过点E作、交于点F,G为的中点,连接.求证:.

17. 如图,l是南北方向的海岸线,码头A与灯塔B相距24千米,海岛C位于码头A北偏东方向.一艘勘测船从海岛C沿北偏西方向往灯塔B行驶,沿线勘测石油资源,勘测发现位于码头A北偏东方向的D处石油资源丰富.若规划修建从D处到海岸线的输油管道,则输油管道的最短长度是多少千米?(结果保留根号)

18. 为研究某种化学试剂的挥发情况,某研究团队在两种不同的场景下做对比实验,收集了该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(),并分别绘制在直角坐标系中,如下图所示.

(1)从,,中,选择适当的函数模型分别模拟两种场景下随变化的函数关系,并求出相应的函数表达式;

(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克.在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?

19. 某中学积极推进校园文学创作,倡导每名学生每学期向校报编辑部至少投1篇稿件.学期末,学校对七、八年级学生投稿情况进行调查.

【数据的收集与整理】

分别从两个年级随机抽取相同数量的学生,统计每人在本学期投稿的篇数,制作了频数分布表.

【数据的描述与分析】

(1)求扇形统计图中圆心角的度数,并补全频数直方图.

(2)根据频数分布表分别计算有关统计量:

直接写出表格中m、n的值,并求出.

【数据的应用与评价】

(3)从中位数、众数、平均数、方差中,任选两个统计量,对七、八年级学生的投稿情况进行比较,并做出评价.

20. 工匠师傅准备从六边形的铁皮中,裁出一块矩形铁皮制作工件,如图所示.经测量,,与之间的距离为2米,米,米,,.,,是工匠师傅画出的裁剪虚线.当的长度为多少时,矩形铁皮的面积最大,最大面积是多少?

21. 如图,正方形内接于,在上取一点E,连接,.过点A作,交于点G,交于点F,连接,.

(1)求证:;

(2)若,,求阴影部分的面积.

22. [材料阅读]

用数形结合的方法,可以探究的值,其中.

例求的值.

方法1:借助面积为1的正方形,观察图①可知

的结果等于该正方形的面积,

即.

方法2:借助函数和的图象,观察图②可知

的结果等于,,,…,…等各条竖直线段的长度之和,

即两个函数图象的交点到轴的距离.因为两个函数图象的交点到轴的距为1,

所以,.

【实践应用】

任务一 完善的求值过程.

方法1:借助面积为2的正方形,观察图③可知______.

方法2:借助函数和的图象,观察图④可知

因为两个函数图象的交点的坐标为______,

所以,______.

任务二 参照上面的过程,选择合适的方法,求的值.

任务三 用方法2,求的值(结果用表示).

【迁移拓展】

长宽之比为的矩形是黄金矩形,将黄金矩形依次截去一个正方形后,得到的新矩形仍是黄金矩形.

观察图⑤,直接写出值.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:60809 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握