潜江 天门 仙桃 江汉 油田2023年初中学业水平考试(中考)
数学试卷
(本卷共6页,满分120分,考试时间120分钟)
注意事项:
1.答题前,考生务必将自己的姓名,准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号.
2.选择题的答案选出后,必须使用2B铅笔把答题卡上对应的答案标号涂黑.如需改动,先用橡皮擦干净后,再选涂其他答案标号.非选择题答案必须使用0,5mm黑色墨水签字笔填写在答题卡对应的区域内,写在本试卷上无效.
3.考试结束后,请将本试卷和答题卡一并交回.
一、选择题(本大题共10个小题,每小题3分,满分30分.在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)
1. 的绝对值是( )
A. B. C. D.
2. 2023年全国高考报名人数约12910000人,数12910000用科学记数法表示( )
A. B. C. D.
3. 如图是一个立体图形的三视图,该立体图形是( )
A. 三棱柱 B. 圆柱 C. 三棱锥 D. 圆锥
4. 不等式组的解集是( )
A B. C. D.
5. 某班9名学生参加定点投篮测试,每人投篮10次,投中的次数统计如下:3,6,4,6,4,3,6,5,7.这组数据的中位数和众数分别是( )
A 5,4 B. 5,6 C. 6,5 D. 6,6
6. 在反比例函数的图象上有两点,当时,有,则的取值范围是( )
A. B. C. D.
7. 如图,在的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点外接圆的一部分,小正方形边长为1,图中阴影部分的面积为( )
A. B. C. D.
8. 如图,在中,,点在边上,且平分的周长,则的长是( )
A. B. C. D.
9. 拋物线与轴相交于点.下列结论:
①;②;③;④若点在抛物线上,且,则.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
10. 如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为(细实线)表示铁桶中水面高度,(粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则随时间变化的函数图象大致为( )
A. B. C. D.
二、填空题(本大题共5个小题,每小题3分,满分15分,请将答案直接填在答线卡对应的横线上)
11. 计算的结果是_________.
12. 在平面直角坐标系中,若反比例函数的图象经过点和点,则的面积为_________.
13. 如图,在中,内切圆与分别相切于点,,连接的延长线交于点,则_________.
14. 有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为_________.
15. 如图,和都是等腰直角三角形,,点在内,,连接交于点交于点,连接.给出下面四个结论:①;②;③;④.其中所有正确结论的序号是_________.
三、解答题(本大题共9个题,满分75分)
16. (1)计算:;
(2)解分式方程:.
17. 为了解学生“防诈骗意识”情况,某校随机抽取了部分学生进行问卷调查,根据调查结果将“防诈骗意识”按A(很强),B(强),C(一般),D(弱),E(很弱)分为五个等级.将收集的数据整理后,绘制成如下不完整的统计图表.
(1)本次调查的学生共_________人;
(2)已知,请将条形统计图补充完整;
(3)若将A,B,C三个等级定为“防诈骗意识”合格,请估计该校2000名学生中"防诈骗意识”合格的学生有多少人?
18. 为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形,斜面坡度是指坡面的铅直高度与水平宽度的比.已知斜坡长度为20米,,求斜坡的长.(结果精确到米)(参考数据:)
19. 已知正六边形,请仅用无刻度的直尺完成下列作图(保留作图痕迹,不写作法,用虚线表示作图过程,实线表示作图结果).
(1)在图1中作出以为对角线的一个菱形;
(2)在图2中作出以为边的一个菱形.
20. 已知关于x的一元二次方程.
(1)求证:无论m取何值时,方程都有两个不相等的实数根;
(2)设该方程的两个实数根为a,b,若,求m的值.
21. 如图,将边长为3的正方形沿直线折叠,使点的对应点落在边上(点不与点重合),点落在点处,与交于点,折痕分别与边,交于点,连接.
(1)求证:;
(2)若,求的长.
22. 某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:
(,x为整数)
设该商品的日销售利润为w元.
(1)直接写出w与x的函数关系式__________________;
(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?
23. 如图,等腰内接于,,是边上的中线,过点作的平行线交的延长线于点,交于点,连接.
(1)求证:为切线;
(2)若的半径为,,求的长.
24. 如图1,在平面直角坐标系中,已知抛物线与轴交于点,与轴交于点,顶点为,连接.
(1)抛物线的解析式为__________________;(直接写出结果)
(2)在图1中,连接并延长交的延长线于点,求的度数;
(3)如图2,若动直线与抛物线交于两点(直线与不重合),连接,直线与交于点.当时,点的横坐标是否为定值,请说明理由.