当前位置:首页 > 中考 > 数学

江苏省常州市2021年数学中考真题(解析版)

试卷简介

这套试卷是江苏省常州市2021年数学中考真题,包含选择题、填空题和解答题三种题型。选择题涵盖了倒数、幂的乘方、几何体的三视图、轴对称和中心对称图形、圆的基本性质、几何概率、二次函数性质等内容;填空题涉及立方根、整式运算、因式分解、科学记数法、数轴、平行四边形性质、三角形内角和、全等三角形及矩形面积计算等;解答题则包括实数运算、解方程组和不等式组、统计图表分析、几何证明、分类讨论、分式方程应用、函数图像分析、直角三角形性质、数形结合、坐标系中的几何变换等。

所涉及的知识点

本试卷涵盖了初中数学的核心知识点,包括但不限于数与代数、几何图形及其性质、概率统计、函数图像及性质等。

江苏省常州市2021年数学中考真题

一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)

1. 的倒数是(  )

A. 2 B. ﹣2 C. D. ﹣

【答案】A

【解析】

【分析】直接利用倒数的定义即可得出答案.

【详解】解:倒数是2,

故选:A.

【点睛】此题主要考查了倒数,正确掌握相关定义是解题关键.

2. 计算的结果是( )

A. B. C. D.

【答案】B

【解析】

【分析】根据幂的乘方公式,即可求解.

【详解】解:=,

故选B.

【点睛】本题主要考查幂的乘方公式,掌握幂的乘方公式,是解题的关键.

3. 如图是某几何体的三视图,该几何体是( )

A. 正方体 B. 圆锥 C. 圆柱 D. 球

【答案】D

【解析】

【分析】首先根据俯视图将正方体淘汰掉,然后根据主视图和左视图将圆锥和圆柱淘汰,即可求解.

【详解】解:∵俯视图是圆,

∴排除A,

∵主视图与左视图均是圆,

∴排除B、C,

故选:D.

【点睛】此题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.

4. 观察所示脸谱图案,下列说法正确的是( )

A. 它是轴对称图形,不是中心对称图形 B. 它是中心对称图形,不是轴对称图形

C. 它既是轴对称图形,也是中心对称图形 D. 它既不是轴对称图形,也不是中心对称图形

【答案】A

【解析】

【分析】根据轴对称图形和中心对称图形的定义,逐一判断选项,即可.

【详解】解:脸谱图案是轴对称图形,不是中心对称图形,

故选A.

【点睛】本题主要考查轴对称和中心对称图形,掌握轴对称和中心对称图形的定义,是解题的关键.

5. 如图,是的直径,是的弦.若,则的度数是( )

A. B. C. D.

【答案】C

【解析】

【分析】先根据平角的定义求出∠AOB,再根据等腰三角形的性质求解,即可.

【详解】解:∵,

∴∠AOB=180°-60°=120°,

∵OA=OB,

∴=∠OBA=(180°-120°)÷2=30°,

故选C.

【点睛】本题主要考查圆基本性质以及等腰三角形的性质,掌握圆的半径相等,是解题的关键.

6. 以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是,则对应的转盘是( )

A. B. C. D.

【答案】D

【解析】

【分析】根据概率公式求出每个选项的概率,即可得到答案.

【详解】解:A.指针落在阴影区域的概率是,

B.指针落在阴影区域的概率是,

C.指针落在阴影区域的概率是,

D.指针落在阴影区域的概率是,

故选D.

【点睛】本题主要考查几何概率,熟练掌握概率公式,是解题的关键.

7. 已知二次函数,当时,y随x增大而增大,则实数a的取值范围是( )

A B. C. D.

【答案】B

【解析】

【分析】根据二次函数的性质,可知二次函数的开口向上,进而即可求解.

【详解】∵二次函数的对称轴为y轴,当时,y随x增大而增大,

∴二次函数的图像开口向上,

∴a-1>0,即:,

故选B.

【点睛】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数的关系,是解题的关键.

8. 为规范市场秩序、保障民生工程,监管部门对某一商品的价格持续监控.该商品的价格(元/件)随时间t(天)的变化如图所示,设(元/件)表示从第1天到第t天该商品的平均价格,则随t变化的图像大致是( )

A. B.

C. D.

【答案】A

【解析】

【分析】根据函数图像先求出关于t的函数解析式,进而求出关于t的解析式,再判断各个选项,即可.

【详解】解:∵由题意得:当1≤t≤6时,=2t+3,

当6<t≤25时,=15,

当25<t≤30时,=-2t+65,

∴当1≤t≤6时,=,

当6<t≤25时,=,

当25<t≤30时,=

= ,

∴当t=30时,=13,符合条件的选项只有A.

故选A.

【点睛】本题主要考查函数图像和函数解析式,掌握待定系数法以及函数图像上点的坐标意义,是解题的关键.

二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)

9. 计算:___.

【答案】3

【解析】

【详解】试题分析:根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a的一个立方根:

∵33=27,∴.

10. 计算:__________.

【答案】

【解析】

【分析】先去括号,再合并同类项,即可求解.

【详解】解:原式=

=,

故答案是:.

【点睛】本题主要考查整式的运算,掌握去括号法则以及合并同类项法则,是解题的关键.

11. 分解因式:__________.

【答案】

【解析】

【分析】根据平方差公式分解因式,即可.

【详解】解:,

故答案是:.

【点睛】本题主要考查因式分解,掌握平方差公式是解题的关键.

12. 近年来,5G在全球发展迅猛,中国成为这一领域基础设施建设、技术与应用落地的一大推动者.截至2021年3月底,中国已建成约819000座5G基站,占全球70%以上.数据819000用科学记数法表示为__________.

【答案】8.19×105

【解析】

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.

【详解】解:819000=8.19×105,

故答案是:8.19×105.

【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

13. 数轴上的点A、B分别表示、2,则点__________离原点的距离较近(填“A”或“B”).

【答案】B

【解析】

【分析】先求出A、B点所对应数的绝对值,进而即可得到答案.

【详解】解:∵数轴上的点A、B分别表示、2,

∴,且3>2,

∴点B离原点的距离较近,

故答案是:B.

【点睛】本题主要考查数轴上点与原点之间的距离,掌握绝对值的意义,是解题的关键.

14. 如图,在平面直角坐标系中,四边形是平行四边形,其中点A在x轴正半轴上.若,则点A的坐标是__________.

【答案】(3,0)

【解析】

【分析】根据平行四边形的性质,可知:OA=BC=3,进而即可求解.

【详解】解:∵四边形是平行四边形,

∴OA=BC=3,

∴点A的坐标是(3,0),

故答案是:(3,0).

【点睛】本题主要考查平行四边形的性质以及点的坐标,掌握平行四边形的对边相等,是解题的关键.

15. 如图,在中,点D、E分别在、上,.若,则________.

【答案】100

【解析】

【分析】先根据三角形内角和定理求出∠A=80°,再根据平行线的性质,求出,即可.

【详解】解:∵,

∴∠A=180°-40°-60°=80°,

∵,

∴180°-80°=100°.

故答案是100.

【点睛】本题主要考查三角形内角和定理以及平行线的性质,掌握两直线平行,同旁内角互补,是解题的关键.

16. 中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在中,分别取、的中点D、E,连接,过点A作,垂足为F,将分割后拼接成矩形.若,则的面积是__________.

【答案】12

【解析】

【分析】先证明,,把三角形的面积化为矩形的面积,进而即可求解.

【详解】解:∵D是的中点,四边形是矩形,

∴AD=BD,∠G=∠AFD=90°,

又∵∠ADF=∠BDG,

∴,

∴DF=DG,AF=BG=2,

同理:,

∴EF=EH,

∴GH=2(DF+EF)=2DE=2×3=6,

∴的面积=矩形的面积=2×6=12.

【点睛】本题主要考查全等三角形的判定和性质,矩形的性质,通过全等三角形的判定,把三角形的面积化为矩形的面积,是解题的关键.

17. 如图,在中,,点D、E分别在、上,点F在内.若四边形是边长为1的正方形,则________.

【答案】

【解析】

【分析】连接AF,CF,过点F作FM⊥AB,由,可得FM=1,再根据锐角三角函数的定义,即可求解.

【详解】解:连接AF,CF,过点F作FM⊥AB,

∵四边形是边长为1的正方形,

∴∠C=90°,

∴AB=,

∵,

∴,

∴ FM=1,

∵BF=,

∴.

故答案是:.

【点睛】本题主要考查锐角三角函数的定义,勾股定理,掌握”等积法“是解题的关键.

18. 如图,在中,,D是上一点(点D与点A不重合).若在的直角边上存在4个不同的点分别和点A、D成为直角三角形的三个顶点,则长的取值范围是________.

【答案】<AD<2

【解析】

【分析】以AD为直径,作与BC相切于点M,连接OM,求出此时AD的长;以AD为直径,作,当点D与点B重合时,求出AD的长,进入即可得到答案.

【详解】解:以AD为直径,作与BC相切于点M,连接OM,则OM⊥BC,此时,在的直角边上存在3个不同的点分别和点A、D成为直角三角形,如图,

∵在中,,

∴AB=2,

∵OM⊥BC,

∴,

设OM=x,则AO=x,

∴,解得:,

∴AD=2×=,

以AD为直径,作,当点D与点B重合时,如图,此时AD=AB=2,

∴在的直角边上存在4个不同的点分别和点A、D成为直角三角形的三个顶点,则长的取值范围是:<AD<2.

故答案是:<AD<2.

【点睛】本题主要考查圆的综合问题,熟练掌握圆周角定理的推论,解直角三角形,画出图形,分类讨论,是解题的关键.

三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)

19. 计算:.

【答案】

【解析】

【分析】先算算术平方根,零指数幂,负整数指数幂以及平方运算,再算加减法,即可求解.

【详解】解:原式=

=.

【点睛】本题主要考查实数的混合运算,掌握算术平方根,零指数幂,负整数指数幂以及平方运算法则,是解的关键.

20. 解方程组和不等式组:

(1)

(2)

【答案】(1);(2)-2<x<1

【解析】

【分析】(1)利用加减消元法,即可求解;

(2)分别求出各个不等式的解,再取公共部分,即可求解.

【详解】解:(1),

①+②,得3x=3,解得:x=1,

把x=1代入①得:y=-1,

∴方程组的解为:;

(2),

由①得:x>-2,

由②得:x<1,

∴不等式组的解为:-2<x<1

【点睛】本题主要考查解二元一次方程组以及解一元一次不等式组,掌握加减消元法以及解不等组的基本步骤,是解题的关键.

21. 为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据“厨余垃圾”、“有害垃圾”、“可回收物”和“其他垃圾”这四类标准将垃圾分类处理调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制成如下统计图.

(1)本次调查的样本容量是_______;

(2)补全条形统计图;

(3)已知该小区有居民2000人,请估计该小区对垃圾分类知识“完全了解”的居民人数.

【答案】(1)100;(2)补全图形见详解;(3)600

【解析】

【分析】(1)用较多了解的人数÷对应百分比,即可求解;

(2)先算出完全了解人数,较少了解人数,再补全统计图,即可;

(3)用2000ד完全了解”的百分比,即可求解.

【详解】解:(1)55÷55%=100(人),

故答案是:100;

(2)完全了解人数:100×30%=30(人),

较少了解人数:100-30-55-5=10(人),

补全统计图如下:

(3)2000×30%=600(人),

答:估计该小区对垃圾分类知识“完全了解”的居民人数有600人.

【点睛】本题主要考查扇形统计图和条形统计图,准确找出相关数据,是解题的关键.

22. 在3张相同的小纸条上,分别写上条件:①四边形是菱形;②四边形有一个内角是直角;③四边形的对角线相等.将这3张小纸条做成3支签,放在一个不透明的盒子中.

(1)搅匀后从中任意抽出1支签,抽到条件①的概率是__________;

(2)搅匀后先从中任意抽出1支签(不放回),再从余下的2支签中任意抽出1支签.四边形同时满足抽到的2张小纸条上的条件,求四边形一定是正方形的概率.

【答案】(1);(2)

【解析】

【分析】(1)根据等可能事件的概率公式,直接求解,即可;

(2)先画出树状图,再根据概率公式,即可求解.

【详解】解:(1)3支签中任意抽出1支签,抽到条件①的概率=1÷3=,

故答案是:;

(2)画出树状图:

∵一共有6种等可能的结果,四边形一定是正方形的可能有4种,

∴四边形一定是正方形的概率=4÷6=.

【点睛】本题主要考查等可能事件的概率,熟练画出树状图是解题的关键.

23. 如图,B、F、C、E是直线l上的四点,.

(1)求证:;

(2)将沿直线l翻折得到.

①用直尺和圆规在图中作出(保留作图痕迹,不要求写作法);

②连接,则直线与l的位置关系是__________.

【答案】(1)见详解;(2)①见详解;②平行

【解析】

【分析】(1)根据“SAS”即可证明;

(2)①以点B为圆心,BA为半径画弧,以点C为圆心,CA 为半径画画弧,两个弧交于,连接B,C,即可;

②过点作M⊥l,过点D 作DN⊥l,则M∥DN,且M=DN,证明四边形MND是平行四边形,即可得到结论.

【详解】(1)证明:∵,

∴BC=EF,

∵,

∴∠ABC=∠DEF,

又∵,

∴;

(2)①如图所示,即为所求;

②∥l,理由如下:

∵,与关于直线l对称,

∴,

过点作M⊥l,过点D 作DN⊥l,则M∥DN,且M=DN,

∴四边形MND是平行四边形,

∴∥l,

故答案是:平行.

【点睛】本题主要考查全等三角形的判定和性质,平行四边形的判定和性质,添加辅助线,构造平行四边形是解题的关键.

24. 为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?

【答案】该景点在设施改造后平均每天用水2吨.

【解析】

【分析】设该景点在设施改造后平均每天用水x吨,则原来平均每天用水2x吨,列出分式方程,即可求解.

【详解】解:设该景点在设施改造后平均每天用水x吨,则原来平均每天用水2x吨,

由题意得:,解得:x=2,

经检验:x=2是方程的解,且符合题意,

答:该景点在设施改造后平均每天用水2吨.

【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出方程,是解题的关键.

25. 如图,在平面直角坐标系中,一次函数的图像分别与x轴、y轴交于点A、B,与反比例函数的图像交于点C,连接.已知点,.

(1)求b、k的值;

(2)求的面积.

【答案】(1)b=2,k=6;(2)6

【解析】

【分析】(1)过点C作CD⊥x轴,则OB∥CD,把代入得:b=2,由,得,进而即可求解;

(2)根据三角形的面积公式,直接求解即可.

【详解】解:(1)过点C作CD⊥x轴,则OB∥CD,

把代入得:,解得:b=2,

∴,

令x=0代入,得y=2,即B(0,2),

∴OB=2,

∵,OB∥CD,

∴,

∴,即:

∴DA=6,CD=3

∴OD=6-4=2,

∴D(2,3),

∴,解得:k=6;

(2)的面积=.

【点睛】本题主要考查反比例函数与一次函数综合,相似三角形的判定和性质,掌握待定系数法以及函数图像点的特征,是解题关键.

26. 通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用.

【理解】

(1)如图1,,垂足分别为C、D,E是的中点,连接.已知,.

①分别求线段、的长(用含a、b的代数式表示);

②比较大小:__________(填“<”、“=”或“>”),并用含a、b的代数式表示该大小关系.

【应用】

(2)如图2,在平面直角坐标系中,点M、N在反比例函数的图像上,横坐标分别为m、n.设,记.

①当时,__________;当时,________;

②通过归纳猜想,可得l的最小值是__________.请利用图2构造恰当的图形,并说明你的猜想成立.

【答案】(1)①,=;②>,>;(2)①,1;②l的最小值是1,理由见详解

【解析】

【分析】(1)①先证明,从而得,进而得CD的值,根据直角三角形的性质,直接得CE的值;②根据点到线之间,垂线段最短,即可得到结论;

(2)①把m,n的值直接代入=进行计算,即可;②过点M作x,y轴的平行线,过点N作x,y轴的平行线,如图所示,则A(n,),B(m,),画出图形,用矩形的面积表示,进而即可得到结论.

【详解】解:(1)①∵,

∴∠ACD+∠A=∠ACD+∠BCD=90°,即:∠A=∠BCD,

又∵∠ADC=∠CDB=90°,

∴,

∴,即:,

∴,即:(负值舍去),

∵E是的中点,

∴==;

②∵,,

∴>,即:>.

故答案是:>;

(2)①当时,==,

当时,==,

故答案是:,1;

②l的最小值是:1,理由如下:

由题意得:M(m,),N(n,),过点M作x,y轴的平行线,过点N作x,y轴的平行线,如图所示,则A(n,),B(m,),

==

=[(①的面积+②的面积)+②的面积+(②的面积+④的面积)+(①的面积+②的面积+③的面积 +④的面积)]

= [(①的面积+②的面积)+(②的面积+④的面积)+(①的面积+②的面积)+(②的面积+④的面积)+③的面积]

=(1+1+1+1+③的面积)≥1,

∴l的最小值是1.

【点睛】本题主要考查直角三角形的性质,反比例函数的图像和性质以及相似三角形的判定和性质,熟练掌握相似三角形的判定和性质,反比例函数图像上点的坐标特征,是解题的关键.

27. 在平面直角坐标系中,对于A、两点,若在y轴上存在点T,使得,且,则称A、两点互相关联,把其中一个点叫做另一个点的关联点.已知点、,点在一次函数的图像上.

(1)①如图,在点、、中,点M的关联点是_______(填“B”、“C”或“D”);

②若在线段上存在点的关联点,则点的坐标是_______;

(2)若在线段上存在点Q的关联点,求实数m的取值范围;

(3)分别以点、Q为圆心,1为半径作、.若对上的任意一点G,在上总存在点,使得G、两点互相关联,请直接写出点Q的坐标.

【答案】(1)①B;②;(2)或;(3)或.

【解析】

【分析】由材料可知关联点的实质就是将点A绕y轴上点T顺时针或逆时针旋转90度的得到点.故先找到旋转90°坐标变化规律,再根据规律解答即可,

(1)①根据关联点坐标变化规律列方程求解点T坐标,有解则是关联点;无解则不是;②关联点的纵坐标等于0,根据关联点坐标变化规律列方程求解即可;

(2)根据关联点坐标变化规律得出关联点,列不等式求解即可;

(3)根据关联点的变化规律可知圆心是互相关联点,由点E坐标求出点Q坐标即可.

【详解】解:在平面直角坐标系中,设,点,关联点,

将点A、点、点T向下平移个单位,点T对应点与原点重合,此时点A、点对应点、,

∵绕原点旋转90度的坐标变化规律为:点(x,y)顺时针旋转,对应点坐标为(y,-x);逆时针旋转对应点坐标为(-y,x),

∴绕原点旋转90度的坐标对应点坐标为或,

即顺时针旋转时,解得:,即关联点,

或逆时针旋转时,,解得:,即关联点,

即:在平面直角坐标系中,设,点,关联点坐标为或,

(1)①由关联点坐标变化规律可知,点关于在y轴上点的关联点坐标为:或,

若点是关联点,则或,解得:,即y轴上点或,故点是关联点;

若点是关联点,则或,无解,故点不是关联点;

若点是关联点,则或,无解,故点不是关联点;

故答案为:B;

②由关联点坐标变化规律可知,点关于点的关联点的坐标为或,

若,解得:,此时即点,不在线段上;

若,解得:,此时即点,在线段上;

综上所述:若在线段上存在点的关联点,则点

故答案为:;

(2)设点与点是关于点关联点,则点坐标为或,

又因为点在一次函数的图像上,即:,

点在线段上,点、,

当∴,

∴,

∴,

或,

∴,

当;

综上所述:当或时,在线段上存在点Q的关联点.

(3)对上的任意一点G,在上总存在点,使得G、两点互相关联,

故点E与点Q也是关于同一点关联,设该点,则

设点与点是关于点关联点,则点坐标为或,

又因为在一次函数的图像上,即:,

∵点,

若,解得:,

即点,

若,解得:,

即点,

综上所述:或.

【点睛】本题主要考查了坐标的旋转变换和一次函数图像上点的特征,解题关键是总结出绕点旋转90°的点坐标变化规律,再由规律列出方程或不等式求解.

28. 如图,在平面直角坐标系中,正比例函数和二次函数的图像都经过点和点B,过点A作的垂线交x轴于点C.D是线段上一点(点D与点A、O、B不重合),E是射线上一点,且,连接,过点D作x轴的垂线交抛物线于点F,以、为邻边作.

(1)填空:________,________;

(2)设点D的横坐标是,连接.若,求t的值;

(3)过点F作的垂线交线段于点P.若,求的长.

【答案】(1),1;(2);(3)

【解析】

【分析】(1)把分别代入一次函数解析式和二次函数解析式,即可求解;

(2)先证明EF=ED,结合D(t, ),F(t, ),可得点E的纵坐标为:,过点A作AM⊥EG,延长GE交x轴于点N,由,从而得,进而即可求解;

(3)先推出,由FP∥AC,得,结合,可得DA==,结合DA+OD=5,列出方程,即可求解.

【详解】解:(1)把代入得:,解得:,

把代入得:,解得:b=1,

故答案是:,1;

(2)∵中,,

∵,

∴=,

∴EF=ED,

∵设点D的横坐标是,则D(t, ),F(t, ),

∴点E的纵坐标为:()÷2=,

联立,解得:或,

∴A(4,3),

∴ 过点A作AM⊥EG,延长GE交x轴于点N,则∠AEM=∠NEC=∠AOC,

∴,

又∵=,

∴,解得:(舍去)或,

∴;

(3)当时,则,

∵⊥FP,AB⊥AC,

∴FP∥AC,

∴,

∵∠FDQ=∠ODH,

∴,

又∵DF=-=,

∴DQ=,

∴DA==,

∵DA+OD=5,

∴+=5,解得:或(舍去),

∴OD==.

【点睛】本题主要考查二次函数与平面几何的综合,根据题意画出图形,添加合适的辅助线,熟练掌握锐角三角函数的定义,平行四边形的性质,是解题的关键.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:61005 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握