当前位置:首页 > 中考 > 数学

2012年安顺市中考数学试卷解析

试卷简介

这份试卷涵盖了2011年至2012年间贵州省安顺市的中考数学试题,包括选择题、填空题和解答题。试卷内容涉及有理数大小比较、科学记数法、立方根、一元二次方程、三角形面积、多边形内角和、相似三角形、无理数识别、方差分析、函数自变量取值范围、图形变换、解直角三角形、解不等式组、分式方程、统计图表分析、圆周角定理、二次函数等多种数学概念和技能。

所涉及的知识点

试卷覆盖了初中数学的基础知识和技能,包括但不限于数与代数、几何与图形、概率与统计等多个方面。

2012年贵州省安顺市中考数学试卷

一.选择题(共10小题)

1.(2011台州)在、0、1、﹣2这四个数中,最小的数是(  )

  A. B. C. 1 D. ﹣2

考点:有理数大小比较。

解答:解:在有理数、0、1、﹣2中,

最大的是1,只有﹣2是负数,

∴最小的是﹣2.

故选D.

2.(2011衡阳)某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为(  )

  A. 3.1×106元 B. 3.1×105元 C. 3.2×106元 D. 3.18×106元

考点:科学记数法与有效数字。

解答:解:3185800≈3.2×106.

故选C.

3.(2011南通)计算的结果是(  )

  A. ±3 B. C. ±3 D. 3

考点:立方根。

解答:解:∵33=27,

∴=3.

故选D.

4.(2011张家界)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是(  )

  A. 1 B. ﹣C. 0 D. 无法确定

考点:一元二次方程的解;一元二次方程的定义。

解答:解:根据题意得:(m﹣1)+1+1=0,

解得:m=﹣1.

故选B.

5.在平面直角坐标系xoy中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO的面积为(  )

  A. 15 B. C. 6 D. 3

考点:三角形的面积;坐标与图形性质。

解答:解:如图,根据题意得,

△ABO的底长OB为2,高为3,

∴S△ABO=×2×3=3.

故选D.

6.(2011长沙)一个多边形的内角和是900°,则这个多边形的边数是(  )

  A. 6 B. C. 8 D. 9

考点:多边形内角与外角。

解答:解:设这个多边形的边数为n,

则有(n﹣2)180°=900°,

解得:n=7,

∴这个多边形的边数为7.

故选B.

7.(2011丹东)某一时刻,身髙的小明在阳光下的影长是,同一时刻同一地点测得某旗杆的影长是,则该旗杆的高度是(  )

  A. B. C. D.

考点:相似三角形的应用。

解答:解:设该旗杆的高度为xm,根据题意得,1.6:0.4=x:5,

解得x=20(m).

即该旗杆的高度是.

故选C.

8.在实数:3.14159,,1.010010001…,,π,中,无理数的(  )

  A. 1个 B. 2个 C. 3个 D. 4个

考点:无理数。

解答:解:∵=4,

∴无理数有:1.010010001…,π.

故选B.

9.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是(  )

  A. 甲、乙射中的总环数相同 B. 甲的成绩稳定

  C. 乙的成绩波动较大 D. 甲、乙的众数相同

考点:方差。

解答:解:A、根据平均数的定义,正确;

B、根据方差的定义,正确;

C、根据方差的定义,正确,

D、一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确定众数,错误.

故选D.

10.(2012安顺)下列说法中正确的是(  )

  A. 是一个无理数

  B. 函数y=的自变量的取值范围是x>﹣1

  C. 若点P(2,a)和点Q(b,﹣3)关于x轴对称,则a﹣b的值为1

  D. ﹣8的立方根是2

考点:关于x轴、y轴对称的点的坐标;算术平方根;立方根;无理数;函数自变量的取值范围。

解答:解:A、=3是有理数,故此选项错误;

B、函数y=的自变量的取值范围是x≥﹣1,故此选项错误;

C、若点P(2,a)和点Q(b,﹣3)关于x轴对称,则b=2,a=3,故a﹣b=3﹣2=1,故此选项正确;

D、﹣8的立方根式﹣2,故此选项错误;

故选:C.

二.填空题(共8小题)

11.(2011衡阳)计算:+= 3 .

考点:二次根式的加减法。

解答:解:原式=2+=3.

12.(2011宁夏)分解因式:a3﹣a= a(a+1)(a﹣1) .

考点:提公因式法与公式法的综合运用。

解答:解:a3﹣a,

=a(a2﹣1),

=a(a+1)(a﹣1).

13.(2012安顺)以方程组的解为坐标的点(x,y)在第 一 象限.

考点:一次函数与二元一次方程(组)。

解答:解:,

①+②得,2y=3,

y=,

把y=代入①得,=x+1,

解得:x=,

因为0,>0,

根据各象限内点的坐标特点可知,

所以点(x,y)在平面直角坐标系中的第一象限.

故答案为:一.

14.(2011衢州)在一自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距 m.

考点:解直角三角形的应用-方向角问题。

解答:解:由已知得:

∠ABC=90°+30°=120°,

∠BAC=90°﹣60°=30°,

∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣120°﹣30°=30°,

∴∠ACB=∠BAC,

∴BC=AB=200.

故答案为:200.

15.(2010临沂)如图,∠1=∠2,添加一个条件使得△ADE∽△ACB ∠D=∠C或∠E=∠B或= .

考点:相似三角形的判定。

解答:解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠CAB.

当∠D=∠C或∠E=∠B或=时,△ADE∽△ACB.

16.如图,a,b,c三种物体的质量的大小关系是 a>b>c .

考点:一元一次不等式的应用。

解答:解:∵=3b,

∴a>b,

∵2b>,

∴b>c,

∴a>b>c.

故答案为:a>b>c.

17.在镜中看到的一串数字是“”,则这串数字是 309087 .

考点:镜面对称。

解答:解;拿一面镜子放在题目所给数字的对面,很容易从镜子里看到答案是309087

故填309087.

18.(2009湛江)已知2+=22×,3+=32×,4+=42×…,若8+=82×(a,b为正整数),则a+b= 71 .

考点:规律型:数字的变化类。

解答:解:根据题意可知a=8,b=82﹣1=63,

∴a+b=71.

三.解答题(共8小题)

19.(2012安顺)计算:﹣22﹣+|1﹣4sin60°|+()0.

考点:实数的运算;零指数幂;特殊角的三角函数值。

解答:解:原式=﹣4﹣2+|1﹣4×|+1

=﹣4﹣2+2﹣1+1

=﹣4.

20.(2011荆州)解不等式组.并把解集在数轴上表示出来.

考点:解一元一次不等式组;在数轴上表示不等式的解集。

解答:解:不等式①去分母,得x﹣3+6≥2x+2,

移项,合并得x≤1,

不等式②去括号,得1﹣3x+3<8﹣x,

移项,合并得x>﹣2,

∴不等式组的解集为:﹣2<x≤1.

数轴表示为:

21.(2011张家界)张家界市为了治理城市污水,需要铺设一段全长为的污水排放管道,铺设后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?

考点:分式方程的应用。

解答:解:设原计划每天铺设管道x米,

则,

解得x=10,

经检验,x=10是原方程的解.

答:原计划每天铺设管道.

22.(2011台州)丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE、CD的长度(精确到个位,≈1.7).

考点:解直角三角形的应用。

解答:解:由∠ABC=120°可得∠EBC=60°,在Rt△BCE中,CE=51,∠EBC=60°,

因此tan60°=,

∴BE===17≈;

在矩形AECF中,由∠BAD=45°,得∠ADF=∠DAF=45°,

因此DF=AF=51,

∴FC=AE≈34+29=,

∴CD=FC﹣FD≈63﹣51=,

因此BE的长度均为,CD的长度均为.

23.(2012安顺)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.

(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?

(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.

考点:作图-平移变换;三角形的面积。

解答:解:(1)图中格点△A′B′C′是由格点△ABC向右平移7个单位长度得到的;

(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),则格点△DEF各顶点的坐标分别为D(0,﹣2),E(﹣4,﹣4),F(3,﹣3),

S△DEF=S△DGF+S△GEF=×5×1+×5×1=5

或=7×2﹣×4×2﹣×7×1﹣×3×1=14﹣4﹣﹣=5.

24.(2012安顺)我市某中学为推进素质教育,在七年级设立了六个课外兴趣小组,下面是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:

(1)七年级共有 320 人;

(2)计算扇形统计图中“体育”兴趣小组所对应的扇形圆心角的度数;

(3)求“从该年级中任选一名学生,是参加科技小组学生”的概率.

考点:条形统计图;扇形统计图;概率公式。

解答:解:(1)64÷20%=320(人);

(2)体育兴趣小组人数为320﹣48﹣64﹣32﹣64﹣16=96,

体育兴趣小组对应扇形圆心角的度数为:;

(3)参加科技小组学生”的概率为:.

25.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.

(1)求∠B的大小;

(2)已知AD=6求圆心O到BD的距离.

考点:圆周角定理;三角形内角和定理;垂径定理。

解答:解:(1)∵∠APD=∠C+∠CAB,

∴∠C=65°﹣40°=25°,

∴∠B=∠C=25°;

(2)作OE⊥BD于E,

则DE=BE,

又∵AO=BO,

∴,

圆心O到BD的距离为3.

26.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为、,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且+c=0.

(1)求抛物线的解析式.

(2)如果点P由点A开始沿AB边以/s的速度向终点B移动,同时点Q由点B开始沿BC边以/s的速度向终点C移动.

①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.

②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

考点:二次函数综合题。

解答:解:(1)设抛物线的解析式为y=ax2+bx+c,

由题意知点A(0,﹣12),

所以c=﹣12,

又+c=0,

∵AB∥OC,且AB=6,

∴抛物线的对称轴是,

∴b=﹣4,

所以抛物线的解析式为;

(2)①,(0<t<6)

②当t=3时,S取最大值为9.

这时点P的坐标(3,﹣12),

点Q坐标(6,﹣6)

若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:

(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18),

(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.

(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.

综上所述,点R坐标为(3,﹣18).

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56105 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握