当前位置:首页 > 中考 > 数学

2014年中考数学试题分类汇编--与特殊四边形有关的填空题

试卷简介

这份试卷涵盖了多个省市2014年的中考数学试题,重点聚焦于特殊四边形(包括矩形、正方形、菱形)相关的复杂填空题。题目涉及折叠问题、旋转问题、全等三角形的判定与性质、勾股定理、解直角三角形、锐角三角函数等知识点。同时,还考察了数学思想中的分类讨论、数形结合、方程思想等内容。

所涉及的知识点

本试卷主要考察了特殊四边形(如矩形、正方形、菱形)的性质及其相关变换(折叠、旋转等),全等三角形的判定与性质,勾股定理,解直角三角形,锐角三角函数等核心数学概念,并强调了分类讨论、数形结合及方程思想的运用。

2014年中考数学分类汇编——与特殊四边形有关的填空压轴题

2014年与特殊四边形(正多边形)有关的填空压轴题,题目展示涉及:折叠问题;旋转问题;三角形全等问题;平面展开﹣最短路径问题;动点问题的函数图象问题.知识点涉及:全等三角形的判定与性质;正方形的判定和性质;解直角三角形,勾股定理,正多边形性质;锐角三角函数.数学思想涉及:分类讨论;数形结合;方程思想. 现选取部分省市的2014年中考题展示,以飨读者.

【题1】(2014.年河南省第题)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为  .

【考点】: 翻折变换(折叠问题).

【分析】: 连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.

【解答】: 解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,

∵点D的对应点D′落在∠ABC的角平分线上,

∴MD′=PD′,

设MD′=x,则PD′=BM=x,

∴AM=AB﹣BM=7﹣x,

又折叠图形可得AD=AD′=5,

∴x2+(7﹣x)2=25,解得x=3或4,

即MD′=3或4.

在RT△END′中,设ED′=a,

①当MD′=3时,D′E=5﹣3=2,EN=7﹣CN﹣DE=7﹣3﹣a=4﹣a,

∴a2=22+(4﹣a)2,

解得a=,即DE=,

②当MD′=4时,D′E=5﹣4=1,EN=7﹣CN﹣DE=7﹣4﹣a=3﹣a,

∴a2=12+(3﹣a)2,

解得a=,即DE=.

故答案为:或.

【点评】: 本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.

  【题2】(2014年四川省绵阳市第17题)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为  .

【考点】: 旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.

【分析】: 根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.

【解答】: 解:将△DAF绕点A顺时针旋转90度到△BAF′位置,

由题意可得出:△DAF≌△BAF′,

∴DF=BF′,∠DAF=∠BAF′,

∴∠EAF′=45°,

在△FAE和△EAF′中

∴△FAE≌△EAF′(SAS),

∴EF=EF′,

∵△ECF的周长为4,

∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,

∴2BC=4,

∴BC=2.

故答案为:2.

【点评】: 此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.

【题3】 (2014年湖北随州第16题)如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:

①当x=1时,点P是正方形ABCD的中心;

②当x=时,EF+GH>AC;

③当0<x<2时,六边形AEFCHG面积的最大值是;

④当0<x<2时,六边形AEFCHG周长的值不变.

其中正确的是  (写出所有正确判断的序号).

【考点】: 翻折变换(折叠问题);正方形的性质.

【分析】: (1)由正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,得出△BEF和△三DGH是等腰直角三角形,所以当AE=1时,重合点P是BD的中点,即点P是正方形ABCD的中心;

(2)由△BEF∽△BAC,得出EF=AC,同理得出GH=AC,从而得出结论.

(3)由六边形AEFCHG面积=正方形ABCD的面积﹣△EBF的面积﹣△GDH的面积.得出函数关系式,进而求出最大值.

(4)六边形AEFCHG周长=AE+EF+FC+CH++HG+AG=(AE+CF)+(FC+AG)+(EF+GH)求解.

【解答】: 解:(1)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,

∴△BEF和△三DGH是等腰直角三角形,

∴当AE=1时,重合点P是BD的中点,

∴点P是正方形ABCD的中心;

故①结论正确,

(2)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,

∴△BEF∽△BAC,

∵x=,

∴BE=2﹣=,

∴=,即=,

∴EF=AC,

同理,GH=AC,

∴EF+GH=AC,

故②结论错误,

(3)六边形AEFCHG面积=正方形ABCD的面积﹣△EBF的面积﹣△GDH的面积.

∵AE=x,

∴六边形AEFCHG面积=22﹣BE•BF﹣GD•HD=4﹣×(2﹣x)•(2﹣x)﹣x•x=﹣x2+2x+2=﹣(x﹣1)2+3,

∴六边形AEFCHG面积的最大值是3,

故③结论错误,

(4)当0<x<2时,

∵EF+GH=AC,

六边形AEFCHG周长=AE+EF+FC+CH++HG+AG=(AE+CF)+(FC+AG)+(EF+GH)=2+2+2=4+2

故六边形AEFCHG周长的值不变,

故④结论正确.

故答案为:①④.

【点评】: 考查了翻折变换(折叠问题),菱形的性质,本题关键是得到EF+GH=AC,综合性较强,有一定的难度.

【题4】(2014江西第13题)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形。若,AB=2,则图中阴影部分的面积为______.

【考点】 菱形的性质,勾股定理,旋转的性质.

【分析】 连接AC、BD,AO、BO,AC与BD交于点E,求出菱形对角线AC长,根据旋转的性质可知AO⊥CO。在Rt△AOC中,根据勾股定理求出AO=CO=,从而求出Rt△AOC的面积,再减去△ACD的面积得阴影部分AOCD面积,一共有四个这样的面积,乘以4即得解。

【解答】

解:连接BD、AC,相交于点E,连接AO、CO。

∵因为四边形ABCD是菱形,

∴AC ⊥BD,AB=AD=2。

∵∠BAD=60°,

∴△ABD是等边三角形,BD=AB=2,

∴∠BAE=∠BAD=30°,AE=AC,BE=DE=BD=1,

在Rt△ABE中,AE=,

∴AC=2。

∵菱形ABCD以点O为中心按顺时针方向旋转90°,180°,270°,

∴∠AOC=×360°=90°,即AO⊥CO,AO=CO

在Rt△AOC中,AO=CO=。

∵S△AOC=AO·CO=××=3,S△ADC=AC·DE=×2×1=,

∴S阴影=S△AOC -S△ADC=4×(3-)=12-4

所以图中阴影部分的面积为12-4。

【题5】 (2014年河南省第14题)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为  .

【考点】: 菱形的性质;扇形面积的计算;旋转的性质.

【分析】: 连接BD′,过D′作D′H⊥AB,则阴影部分的面积可分为3部分,再根据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.

【解答】: 解:连接BD′,过D′作D′H⊥AB,

∵在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,

∴D′H=,

∴S△ABD′=1×=,

∴图中阴影部分的面积为+﹣,

故答案为:+﹣.

【点评】: 本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.

  【题6】(2014•泰州第16题)如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于  cm.

【题7】 (2014年重庆市第18题)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为  .

【考点】: 全等三角形的判定与性质;等腰直角三角形;正方形的性质.

【分析】: 在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则OG=OF,∠BOG=∠COF,得出等腰直角三角形GOF,在RT△BCE中,根据射影定理求得GF的长,即可求得OF的长.

【解答】: 解:如图,在BE上截取BG=CF,连接OG,

∵RT△BCE中,CF⊥BE,

∴∠EBC=∠ECF,

∵∠OBC=∠OCD=45°,

∴∠OBG=∠OCF,

在△OBG与△OCF中

∴△OBG≌△OCF(SAS)

∴OG=OF,∠BOG=∠COF,

∴OG⊥OF,

在RT△BCE中,BC=DC=6,DE=2EC,

∴EC=2,

∴BE===2,

∵BC2=BF•BE,

则62=BF,解得:BF=,

∴EF=BE﹣BF=,

∵CF2=BF•EF,

∴CF=,

∴GF=BF﹣BG=BF﹣CF=,

在等腰直角△OGF中

OF2=GF2,

∴OF=.

【点评】: 本题考查了全等三角形的判定和性质,直角三角形的判定以及射影定理、勾股定理的应用.

【题8】 (2014年宁夏第15题)如图,在四边形ABCD中,AD∥BC,AB=CD=2,BC=5,∠BAD的平分线交BC于点E,且AE∥CD,则四边形ABCD的面积为  .

【考点】: 平行四边形的判定与性质;等边三角形的判定与性质.

【分析】: 根据题意可以判定△ABE是等边三角形,求得该三角形的高即为等腰梯形ABCD的高.所以利用梯形的面积公式进行解答.

【解答】: 解:如图,过点A作AF⊥BC于点F.

∵AD∥BC,

∴∠DAE=∠AEB,

又∵∠BAE=∠DAE,

∴∠BAE=∠AEB,

∵AE∥CD,

∴∠AEB=∠C,

∵AD∥BC,AB=CD=2,

∴四边形是等腰梯形,

∴∠B=∠C,

∴△ABE是等边三角形,

∴AB=AE=BE=2,∠B=60°,

∴AF=AB•sin60°=2×=,

∵AD∥BC,AE∥CD,

∴四边形AECD是平行四边形,

∴AD=EC=BC﹣BE=5﹣2=3,

∴梯形的面积=(AD+BC)×AF=×(3+5)×=4.

【点评】: 本题考查了等边三角形的判定和性质,平行四边形的判定和性质,等腰梯形的性质等.

【题9】(2014•宁波第11题)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是  .

【题10】(2014•武汉第16题)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为__________.

【题11】(2014•苏州第17题)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为  .

【题129】(2014•枣庄第18题)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为____________cm.

【题13】 (2014年江苏徐州第18题)如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2,y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为   .

【考点】:动点问题的函数图象.

【分析】:根据从图②可以看出当Q点到B点时的面积为9,求出正方形的边长,再利用三角形的面积公式得出EF所在的直线对应的函数关系式.

【解答】:解:∵点P沿边DA从点D开始向点A以1cm/s的速度移动;点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.

∴当P点到AD的中点时,Q到B点,

从图②可以看出当Q点到B点时的面积为9,

∴9=×(AD)•AB,

∵AD=AB,

∴AD=6,即正方形的边长为6,

当Q点在BC上时,AP=6﹣x,△APQ的高为AB,

∴y=(6﹣x)×6,即y=﹣3x+18.

故答案为:y=﹣3x+18.

【点评】:本题主要考查了动点函数的图象,解决本题的关键是求出正方形的边长.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56380 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握