当前位置:首页 > 中考 > 数学

2014年中考数学试题分类汇编24 多边形与平行四边形

试卷简介

这份试卷涵盖了多个关于多边形和平行四边形的题目,其中包括选择题、填空题和解答题。选择题部分涉及多边形的外角和、内角和、平行四边形的判定及其性质;填空题部分主要考察平行四边形的性质、中位线定理以及多边形内角和的计算;解答题部分则涉及复杂的几何证明和计算问题,如平行四边形的性质、等腰梯形的判定、四边形的面积计算以及多边形内角和与外角和的关系。

所涉及的知识点

这份数学试卷主要考察了多边形(特别是七边形和九边形)的外角和、内角和,以及平行四边形的性质和判定方法。同时,还涉及了平行线的判定、全等三角形的判定与性质、直角三角形斜边上的中线、四边形面积计算、等腰梯形的判定等知识点。

多边形与平行四边形

一、选择题

1. ( 2014•福建泉州,第4题3分)七边形外角和为(  )

2. ( 2014•广东,第5题3分)一个多边形的内角和是900°,这个多边形的边数是(  )

3. ( 2014•广东,第7题3分)如图,▱ABCD中,下列说法一定正确的是(  )

4.(2014•新疆,第4题5分)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是(  )

5.(2014•毕节地区,第9题3分)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )

6.(2014·台湾,第24题3分)下列选项中的四边形只有一个为平行四边形,根据图中所给的边长长度及角度,判断哪一个为平行四边形?(  )

A. B.

C. D.

分析:利用平行四边形的判定定理、等腰梯形的判定及梯形的判定方法分别对每个选项判断后即可确定答案.x k b 1

解:A.上、下这一组对边平行,可能为等腰梯形;

B.上、下这一组对边平行,可能为等腰梯形,但此等腰梯形底角为90°,所以为平行

四边形;

C.上、下这一组对边平行,可能为梯形;

D.上、下这一组对边平行,可能为梯形;

故选B.

点评:本题考查了平行四边形的判定定理、等腰梯形的判定及梯形的判定方法,掌握这些特殊的四边形的判定方法是解答本题的关键.

7.(2014·云南昆明,第7题3分)如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是

A. AB∥CD,AD∥BC

B. OA=OC,OB=OD

C. AD=BC,AB∥CD

D. AB=CD,AD=BC

8.(2014•浙江湖州,第10题3分)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是(  )

  A. B.

C. D.

分析:分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断.

解:A选项延长AC、BE交于S,∵∠CAE=∠EDB=45°,∴AS∥ED,则SC∥DE.

同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,

即乙走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;

B选项延长AF、BH交于S1,作FK∥GH,

∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,

∴AS=AS1,BS=BS1,∵∠FGH=67°=∠GHB,∴FG∥KH,

∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,

∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,

∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,

同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.

点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.

8. (2014•湘潭,第7题,3分)以下四个命题正确的是(  )

9. (2014•益阳,第7题,4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是(  )

(第2题图)

10. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是(  )

11.(2014•孝感,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是(  )

新*课*标*第*一*网

二.填空题

1. ( 2014•安徽省,第14题5分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 ①②④ .(把所有正确结论的序号都填在横线上)

①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.

考点: 平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.

分析: 分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.

解答: 解:①∵F是AD的中点,

∴AF=FD,

∵在▱ABCD中,AD=2AB,

∴AF=FD=CD,

∴∠DFC=∠DCF,

∵AD∥BC,

∴∠DFC=∠FCB,

∴∠DCF=∠BCF,

∴∠DCF=∠BCD,故此选项正确;

延长EF,交CD延长线于M,

∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠A=∠MDE,

∵F为AD中点,

∴AF=FD,

在△AEF和△DFM中,

∴△AEF≌△DMF(ASA),

∴FE=MF,∠AEF=∠M,

∵CE⊥AB,

∴∠AEC=90°,

∴∠AEC=∠ECD=90°,

∵FM=EF,

∴FC=FM,故②正确;

③∵EF=FM,

∴S△EFC=S△CFM,

∵MC>BE,

∴S△BEC<2S△EFC

故S△BEC=2S△CEF错误;

④设∠FEC=x,则∠FCE=x,

∴∠DCF=∠DFC=90°﹣x,

∴∠EFC=180°﹣2x,

∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,

∵∠AEF=90°﹣x,

∴∠DFE=3∠AEF,故此选项正确.

故答案为:①②④.

点评: 此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.

2. ( 2014•广东,第13题4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= 3 .

3.(2014•毕节地区,第19题5分)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为 30 度.

4.(2014•襄阳,第17题3分)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于 12或20 .

5.(2014•四川自贡,第13题4分)一个多边形的内角和比外角和的3倍多180°,则它的边数是 9 .

6. (2014•泰州,第9题,3分)任意五边形的内角和为 540° .

7. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1= 67.5° .

(第2题图)

三.解答题

1. ( 2014•安徽省,第23题14分)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.

(1)①∠MPN= 60° ;

②求证:PM+PN=3a;

(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;

(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.

考点: 四边形综合题.

分析: (1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,

(2)连接OE,由△OMA≌△ONE证明,

(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,

解答: 解:(1)①∵四边形ABCDEF是正六边形,

∴∠A=∠B=∠C=∠D=∠E=∠F=120°

又∴PM∥AB,PN∥CD,

∴∠BPM=60°,∠NPC=60°,

∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,

故答案为;60°.

②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,

MP+PN=MG+GH+HP+PL+LK+KN

∵正六边形ABCDEF中,PM∥AB,作PN∥CD,

∵∠AMG=∠BPH=∠CPL=∠DNK=60°,

∴GM=AM,HL=BP,PL=PM,NK=ND,

∵AM=BP,PC=DN,

∴MG+HP+PL+KN=a,GH=LK=a,

∴MP+PN=MG+GH+HP+PL+LK+KN=3A.

(2)如图2,连接OE,

∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,

∴AM=BP=EN,

又∵∠MAO=∠NOE=60°,OA=OE,

在△ONE和△OMA中,

∴△OMA≌△ONE(SAS)

∴OM=ON.

(3)如图3,连接OE,

由(2)得,△OMA≌△ONE

∴∠MOA=∠EON,

∵EF∥AO,AF∥OE,

∴四边形AOEF是平行四边形,

∴∠AFE=∠AOE=120°,

∴∠MON=120°,

∴∠GON=60°,

∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,

∴∠GOE=∠DON,

∵OD=OE,∠ODN=∠OEG,

在△GOE和∠DON中,

∴△GOE≌△NOD(ASA),

∴ON=OG,

又∵∠GON=60°,

∴△ONG是等边三角形,

∴ON=NG,

又∵OM=ON,∠MOG=60°,

∴△MOG是等边三角形,

∴MG=GO=MO,

∴MO=ON=NG=MG,

∴四边形MONG是菱形.

点评: 本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.

2. ( 2014•广西贺州,第21题7分)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.

(1)求证:BE=DF;

(2)求证:AF∥CE.

3.(2014年云南省,第22题7分)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.

(1)求证:四边形MNCD是平行四边形;

(2)求证:BD=MN.

考点: 平行四边形的判定与性质

专题: 证明题.

分析: (1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;

(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.

解答: 证明:(1)∵ABCD是平行四边形,

∴AD=BC,AD∥BC,

∵M、N分别是AD、BC的中点,

∴MD=NC,MD∥NC,

∴MNCD是平行四边形;

(2)如图:连接ND,

∵MNCD是平行四边形,

∴MN=DC.

∵N是BC的中点,

∴BN=CN,

∵BC=2CD,∠C=60°,

∴△NVD是等边三角形.

∴ND=NC,∠DNC=60°.

∵∠DNC是△BND的外角,

∴∠NBD+∠NDB=∠DNC,

∵DN=NC=NB,

∴∠DBN=∠BDN=∠DNC=30°,

∴∠BDC=90°.

∵tan,

∴DB=DC=MN.

点评: 本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.

4.(2014•温州,第24题14分)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.

(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.

(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.

(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.

①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;

②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.

5.(2014•舟山,第23题10分)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.

(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.

(2)在探究“等对角四边形”性质时:

①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;

②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.

(3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.

6.(2014年广东汕尾,第20题9分)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.

(1)证明:FD=AB;

(2)当平行四边形ABCD的面积为8时,求△FED的面积.

分析:(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;

(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.

(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,

在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;

(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,

∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,

∴△FED的面积为:2.

点评: 此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FDE=S平行四边形ABCD是解题关键.

7.(2014•泰州,第23题,10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.

(1)求证:BE=AF;

(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.

(第1题图)

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56395 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握