当前位置:首页 > 中考 > 数学

2014年中考数学试题分类汇编27 图形的相似与位似

试卷简介

这份试卷包含了多个涉及相似三角形、位似图形、平行四边形性质以及函数图像的题目。这些题目不仅测试了学生对几何图形性质的理解,还考察了他们应用这些性质解决实际问题的能力。例如,题目中涉及到了动点问题的函数图像、位似图形的面积比、平行四边形与相似三角形的判定与性质、以及利用勾股定理和三角函数解决几何问题等。

所涉及的知识点

- 试卷主要考察了相似三角形的性质和判定,包括位似图形、动点问题、平行四边形性质等几何知识的应用。 - 涉及到函数图像、二次函数最值、圆的性质、折叠问题等综合知识点的应用。

图形的相似与位似

一、选择题

1. ( 2014•安徽省,第9题4分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是(  )

  A. B. C. D.

考点: 动点问题的函数图象.

分析: ①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.

解答: 解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;

②点P在BC上时,3<x≤5,

∵∠APB+∠BAP=90°,

∠PAD+∠BAP=90°,

∴∠APB=∠PAD,

又∵∠B=∠DEA=90°,

∴△ABP∽△DEA,

∴=,

即=,

∴y=,

纵观各选项,只有B选项图形符合.

故选B.

点评: 本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.

 www.czsx.com.cn

2. (2014•广西玉林市、防城港市,第7题3分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是(  )

A.3 B.6 C.9 D.12

考点:位似变换.

分析:利用位似图形的面积比等于位似比的平方,进而得出答案.

解答:解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,

∴△ABC与△A′B′C′的面积比为:1:4,

则△A′B′C′的面积是:12.

故选:D.

点评:此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.

3.(2014年天津市,第8题3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于(  )

  A. 3:2 B. 3:1 C. 1:1 D. 1:2

考点: 平行四边形的性质;相似三角形的判定与性质.

分析: 根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.

解答: 解:∵▱ABCD,故AD∥BC,

∴△DEF∽△BCF,

∴=,

∵点E是边AD的中点,

∴AE=DE=AD,

∴=.

故选:D.

点评: 此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.

4.(2014•毕节地区,第12题3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于( )

A. B. C. D.

考点:相似三角形的判定与性质

分析:根据已知条件得出△ADC∽△BDE,然后依据对应边成比例即可求得.

解答:解:∵∠C=∠E,∠ADC=∠BDE,

△ADC∽△BDE,

∴=,

又∵AD:DE=3:5,AE=8,

∴AD=3,DE=5,

∵BD=4,

∴=,

∴DC=,

故应选A.

点评:本题考查了相似三角形的判定和性质:对应角相等的三角形是相似三角形,相似三角形对应边成比例.

5.(2014•武汉,第6题3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )

A.(3,3) B.(4,3) C.(3,1) D.(4,1)

考点:位似变换;坐标与图形性质

分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.

解答:解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,

∴端点C的坐标为:(3,3).

故选:A.

点评:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.

6. (2014年江苏南京,第3题,2分)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为(  )

 A.1:2 B. 2:1 C. 1:4 D. 4:1

考点:相似三角形的性质

分析:根据相似三角形面积的比等于相似比的平方计算即可得解.

解答:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.

点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.

7. (2014年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是(  )

(第2题图)

A.(,3)、(﹣,4) B. (,3)、(﹣,4)

C.(,)、(﹣,4) D.(,)、(﹣,4)

考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。

分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.

解答:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,

∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,

在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),

∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,

∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,

∴OE=,即点B(,3),∴AF=OE=,

∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.

点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

8.(2014年山东泰安,第10题3分)在△ABC和△A1B1C1中,下列四个命题:

(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;

(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;

(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;

(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.

其中真命题的个数为(  )

 A.4个 B. 3个 C. 2个 D. 1个

分析:分别利用相似三角形的判定和全等三角形的判定定理进行判断即可得到正确的选项.

解:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,能用SAS定理判定△ABC≌△A1B1C1,正确;

(2)若AB=A1B1,AC=A1C1,∠B=∠B1,不能判定△ABC≌△A1B1C1,错误;

(3)若∠A=∠A1,∠C=∠C1,能判定△ABC∽△A1B1C1,正确;

(4)若AC:A1C1=CB:C1B1,∠C=∠C1,能利用两组对应边的比相等且夹角相等的两三角形相似判定△ABC∽△A1B1C1,正确.故选B.

点评:本题考查了命题与定理的知识,解题的关键是掌握三角形全等和相似的判定方法.

二.填空题

1.(2014•邵阳,第14题3分)如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形: △ABP∽△AED .

考点:相似三角形的判定;平行四边形的性质

专题:开放型.

分析:可利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似判断△ABP∽△AED.

解答:解:∵BP∥DF,

∴△ABP∽△AED.

故答案为△ABP∽△AED.

点评:本题考查了相似三角形的判定与性质:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;

2.(2014·云南昆明,第14题3分)如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是 cm

考点:折叠、勾股定理、三角形相似.

分析:根据折叠性质可得,先由勾股定理求出AF、EF的长度,再根据∽可求出EG、BG的长度.

解答:解:根据折叠性质可得,设则,在Rt△AEF中,

,即,解得:,所以

根据∽,可得,即,所以,所以△EBG的周长为3+4+5=12。

故填12

点评:本题考查了折叠的性质,勾股定理的运用及三角形相似问题..

3. (2014•泰州,第15题,3分)如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为 y=(x>0) .

(第1题图)

考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.

分析:连接AE,DE,根据同弧所对的圆周角等于圆心角的一半,求得∠AED=120°,然后求得△ABE∽△ECD.根据相似三角形的对应边对应成比例即可表示出x与y的关系,从而不难求解.

解答:解:连接AE,DE,

∵∠AOD=120°,

∴为240°,

∴∠AED=120°,

∵△BCE为等边三角形,

∴∠BEC=60°;

∴∠AEB+∠CED=60°;

又∵∠EAB+∠AEB=60°,

∴∠EAB=∠CED,

∵∠ABE=∠ECD=120°;

∴=,

即=,

∴y=(x>0).

点评:此题主要考查学生圆周角定理以及对相似三角形的判定与性质及反比例函数的实际运用能力.

4.(2014•滨州,第15题4分)如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则= .

考点:相似三角形的判定与性质

①若点E为直角顶点,如答图3①所示,

此时PE∥AD,PE=DH=2t,BP=3t.

∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;

②若点F为直角顶点,如答图3②所示,

此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.

∵PF∥AD,∴,即,解得t=;

③若点P为直角顶点,如答图3③所示.

过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.

∵EM∥AD,∴,即,解得BM=t,

∴PM=BP﹣BM=3t﹣t=t.

在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.

∵FN∥AD,∴,即,解得CN=t,

∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.

在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.

在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,

即:(10﹣t)2=(t2)+(t2﹣85t+100)

化简得:t2﹣35t=0,

解得:t=或t=0(舍去)

∴t=.

综上所述,当t=秒或t=秒时,△PEF为直角三角形.

点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.

6. ( 2014•珠海,第18题7分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.

(1)求BE的长;

(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.

考点:切线的性质;扇形面积的计算;平移的性质

专题:计算题.

分析:(1)连结OG,先根据勾股定理计算出BC=5,再根据平移的性质得AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,由于EF与半圆O相切于点G,根据切线的性质得OG⊥EF,然后证明Rt△EOG∽Rt△EFD,利用相似比可计算出OE=,所以BE=OE﹣OB=;

(2)求出BD的长度,然后利用相似比例式求出DH的长度,从而求出△BDH,即阴影部分的面积.

解答:解:(1)连结OG,如图,

∵∠BAC=90°,AB=4,AC=3,

∴BC==5,

∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,

∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,

∵EF与半圆O相切于点G,

∴OG⊥EF,

∵AB=4,线段AB为半圆O的直径,

∴OB=OG=2,

∵∠GEO=∠DEF,

∴Rt△EOG∽Rt△EFD,

∴=,即=,解得OE=,

∴BE=OE﹣OB=﹣2=;

(2)BD=DE﹣BE=4﹣=.

∵DF∥AC,

∴,即,

解得:DH=2.

∴S阴影=S△BDH=BD•DH=××2=,

即Rt△ABC与△DEF重叠(阴影)部分的面积为.

点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了平移的性质、勾股定理和相似三角形的判定与性质.

7. ( 2014•珠海,第21题9分)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.

(1)求证:EF∥AC;

(2)求∠BEF大小;

(3)求证:=.

考点:四边形综合题

分析:(1)根据有一组对边平行且相等的四边形是平行四边形即可判定.

(2)先确定三角形GCF是等腰直角三角形,得出CG=AE,然后通过△BAE≌△BCG,得出BE=BG=EG,即可求得.

(3)因为三角形BEG是等边三角形,∠ABC=90°,∠ABE=∠CBG,从而求得∠ABE=15°,然后通过求得△AHB∽△FGB,即可求得.

解答:解:(1)∵四边形ABCD是正方形,

∴AD∥BF,

∵AE=CF,

∴四边形ACFE是平行四边形,

∴EF∥AC,

(2)连接BG,

∵EF∥AC,

∴∠F=∠ACB=45°,

∵∠GCF=90°,

∴∠CGF=∠F=45°,

∴CG=CF,

∵AE=CF,

∴AE=CG,

在△BAE与△BCG中,

∴△BAE≌△BCG(SAS)

∴BE=BG,

∵BE=EG,

∴△BEG是等边三角形,

∴∠BEF=60°,

(3)∵△BAE≌△BCG,

∴∠ABE=∠CBG,

∵∠BAC=∠F=45°,

∴△AHB∽△FGB,

∴======,

∵∠EBG=60°∠ABE=∠CBG,∠ABC=90°,

∴∠ABE=15°,

∴=.

点评:本题考查了平行四边形的判定及性质,求得三角形的判定及 性质,正方形的性质,相似三角形的判定及性质,连接BG是本题的关键.

8. ( 2014•广西玉林市、防城港市,第23题9分)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.

(1)求证:∠1=∠2.

(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.

考点:切线的性质;相似三角形的判定与性质.

专题:证明题.

分析:(1)连结OD,根据切线的性质得OD⊥DE,则∠2+∠ODC=90°,而∠C=∠ODC,则∠2+∠C=90°,由OC⊥OB得∠C+∠3=90°,所以∠2=∠3,而∠1=∠3,

所以∠1=∠2;

(2)由OF:OB=1:3,⊙O的半径为3得到OF=1,由(1)中∠1=∠2得EF=ED,在Rt△ODE中,DE=x,则EF=x,OE=1+x,根据勾股定理得32+t2=(t+1)2,解得t=4,则DE=4,OE=5,根据切线的性质由AG为⊙O的切线得∠GAE=90°,再证明Rt△EOD∽Rt△EGA,利用相似比可计算出AG.

解答:(1)证明:连结OD,如图,

∵DE为⊙O的切线,

∴OD⊥DE,

∴∠ODE=90°,即∠2+∠ODC=90°,

∵OC=OD,

∴∠C=∠ODC,

∴∠2+∠C=90°,

而OC⊥OB,

∴∠C+∠3=90°,

∴∠2=∠3,

∵∠1=∠3,

∴∠1=∠2;

(2)解:∵OF:OB=1:3,⊙O的半径为3,

∴OF=1,

∵∠1=∠2,

∴EF=ED,

在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,

∵OD2+DE2=OE2,

∴32+t2=(t+1)2,解得t=4,

∴DE=4,OE=5,

∵AG为⊙O的切线,

∴AG⊥AE,

∴∠GAE=90°,

而∠OED=∠GEA,

∴Rt△EOD∽Rt△EGA,

∴=,即=,

∴AG=6.

点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理和相似三角形的判定与性质.

9. ( 2014•广西玉林市、防城港市,第25题10分)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.

(1)求证:四边形BMNP是平行四边形;

(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.

考点:相似三角形的判定与性质;平行四边形的判定与性质;正方形的性质.

分析:(1)根据正方形的性质可得AB=BC,∠ABC=∠B,然后利用“边角边”证明△ABM和△BCP全等,根据全等三角形对应边相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,从而得到MN∥BP,然后根据一组对边平行且相等的四边形是平行四边形证明即可;

(2)根据同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根据相似三角形对应边成比例可得=,再求出△AMQ∽△ABM,根据相似三角形对应边成比例可得=,从而得到=,即可得解.

解答:(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠B,

在△ABM和△BCP中,

∴△ABM≌△BCP(SAS),

∴AM=BP,∠BAM=∠CBP,

∵∠BAM+∠AMB=90°,

∴∠CBP+∠AMB=90°,

∴AM⊥BP,

∵AM并将线段AM绕M顺时针旋转90°得到线段MN,

∴AM⊥MN,且AM=MN,

∴MN∥BP,

∴四边形BMNP是平行四边形;

(2)解:BM=MC.

理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,

∴∠BAM=∠CMQ,

又∵∠B=∠C=90°,

∴△ABM∽△MCQ,

∴=,

∵△MCQ∽△AMQ,

∴△AMQ∽△ABM,

∴=,

∴=,

∴BM=MC.

点评:本题考查了相似三角形的判定与性质,正方形的性质,全等三角形的判定与性质,平行四边形的判定,(1)求出两个三角形全等是解题的关键,(2)根据相似于同一个三角形的两个三角形相似求出△AMQ∽△ABM是解题的关键.

10.(2014年四川资阳,第23题11分)如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.

(1)求证:△ABP≌△CBE;

(2)连结AD、BD,BD与AP相交于点F.如图2.

①当=2时,求证:AP⊥BD;

②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.

考点: 相似形综合题.

分析: (1)求出∠ABP=∠CBE,根据SAS推出即可;

(2)①延长AP交CE于点H,求出AP⊥CE,证出△CPD∽△BPE,推出DP=PE,求出平行四边形BDCE,推出CE∥BD即可;

②分别用S表示出△PAD和△PCE的面积,代入求出即可.

解答: (1)证明:∵BC⊥直线l1,

∴∠ABP=∠CBE,

在△ABP和△CBE中

∴△ABP≌△CBE(SAS);

(2)①证明:延长AP交CE于点H,

∵△ABP≌△CBE,

∴∠PAB=∠ECB,

∴∠PAB+∠AEE=∠ECB+∠AEH=90°,

∴AP⊥CE,

∵=2,即P为BC的中点,直线l1∥直线l2,

∴△CPD∽△BPE,

∴==,

∴DP=PE,

∴四边形BDCE是平行四边形,

∴CE∥BD,

∵AP⊥CE,

∴AP⊥BD;

②解:∵=N

∴BC=n•BP,

∴CP=(n﹣1)•BP,

∵CD∥BE,

∴△CPD∽△BPE,

∴==n﹣1,

即S2=(n﹣1)S,

∵S△PAB=S△BCE=n•S,

∴△PAE=(n+1)•S,

∵==n﹣1,

∴S1=(n+1)(n﹣1)•S,

∴==n+1.

点评: 本题考查了平行四边形的性质和判定,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查了学生的推理能力,题目比较好,有一定的难度.

11.(2014•武汉,第24题10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.

(1)若△BPQ与△ABC相似,求t的值;

(2)连接AQ,CP,若AQ⊥CP,求t的值;

(3)试证明:PQ的中点在△ABC的一条中位线上.

考点:相似形综合题

分析:(1)分两种情况讨论:①当△BPQ∽△BAC时,=,当△BPQ∽△BCA时,=,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;

(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出=,代入计算即可;

(3)作PE⊥AC于点E,DF⊥AC于点F,先得出DF=,再把QC=4t,PE=8﹣BM=8﹣4t代入求出DF,过BC的中点R作直线平行于AC,得出RC=DF,D在过R的中位线上,从而证出PQ的中点在△ABC的一条中位线上.

解答:解:(1)①当△BPQ∽△BAC时,

∵=,BP=5t,QC=4t,AB=10cm,BC=8cm,

∴=,

∴t=1;

②当△BPQ∽△BCA时,

∵=,

∴=,

∴t=,

∴t=1或时,△BPQ与△ABC相似;

(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,

∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,

∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,

∴△ACQ∽△CMP,

∴=,

∴=,

解得:t=;

(3)如图,仍有PM⊥BC于点M,PQ的中点设为D点,再作PE⊥AC于点E,DF⊥AC于点F,

∵∠ACB=90°,

∴DF为梯形PECQ的中位线,

∴DF=,

∵QC=4t,PE=8﹣BM=8﹣4t,

∴DF==4,

∵BC=8,过BC的中点R作直线平行于AC,

∴RC=DF=4成立,

∴D在过R的中位线上,

∴PQ的中点在△ABC的一条中位线上.

点评:此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.

12.(2014•四川自贡,第23题12分)阅读理解:

如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:

(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;

(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;

(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.

考点:相似形综合题

分析:(1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.

(2)以CD为直径画弧,取该弧与AB的一个交点即为所求;

(3)因为点E是矩形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.

解答:解:(1)∵∠A=∠B=∠DEC=45°,

∴∠AED+∠ADE=135°,∠AED+∠CEB=135°

∴∠ADE=∠CEB,

在△ADE和△BCE中,

∴△ADE∽△BCE,

∴点E是否是四边形ABCD的边AB上的相似点.

(2)如图所示:点E是四边形ABCD的边AB上的相似点,

(3)∵点E是四边形ABCM的边AB上的一个强相似点,

∴△AEM∽△BCE∽△ECM,

∴∠BCE=∠ECM=∠AEM.

由折叠可知:△ECM≌△DCM,

∴∠ECM=∠DCM,CE=CD,

∴∠BCE=∠BCD=30°,

BE=,

在Rt△BCE中,tan∠BCE==tan30°=,

∴.

点评:本题是相似三角形综合题,主要考查了相似三角形的对应边成比例的性质,读懂题目信息,理解全相似点的定义,判断出∠CED=90°,从而确定作以CD为直径的圆是解题的关键.

13. (2014•湘潭,第25题) △ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,

(1)求证:△BDF∽△CEF;

(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;

(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.

(第1题图)

考点:相似形综合题;二次函数的最值;等边三角形的性质;圆周角定理;解直角三角形

分析:(1)只需找到两组对应角相等即可.

(2)四边形ADFE面积S可以看成△ADF与△AEF的面积之和,借助三角函数用m表示出AD、DF、AE、EF的长,进而可以用含m的代数式表示S,然后通过配方,转化为二次函数的最值问题,就可以解决问题.

(3)易知AF就是圆的直径,利用圆周角定理将∠EDF转化为∠EAF.在△AFC中,知道tan∠EAF、∠C、AC,通过解直角三角形就可求出AF长.

解答:解:(1)∵DF⊥AB,EF⊥AC,

∴∠BDF=∠CEF=90°.

∵△ABC为等边三角形,

∴∠B=∠C=60°.

∵∠BDF=∠CEF,∠B=∠C,

∴△BDF∽△CEF.

(2)∵∠BDF=90°,∠B=60°,

∴sin60°==,cos60°==.

∵BF=m,

∴DF=m,BD=.

∵AB=4,

∴AD=4﹣.

∴S△ADF=AD•DF=×(4﹣)×m=﹣m2+m.

同理:S△AEF=AE•EF=×(4﹣)×(4﹣m)=﹣m2+2.

∴S=S△ADF+S△AEF=﹣m2+m+2=﹣(m2﹣4m﹣8)

=﹣(m﹣2)2+3.其中0<m<4.

∵﹣<0,0<2<4,

∴当m=2时,S取最大值,最大值为3.

∴S与m之间的函数关系为:

S═﹣(m﹣2)2+3(其中0<m<4).

当m=2时,S取到最大值,最大值为3.

(3)如图2,

∵A、D、F、E四点共圆,

∴∠EDF=∠EAF.

∵∠ADF=∠AEF=90°,

∴AF是此圆的直径.

∵tan∠EDF=,

∴tan∠EAF=.

∴=.

∵∠C=60°,

∴=tan60°=.

设EC=x,则EF=x,EA=2x.

∵AC=a,

∴2x+x=A.

∴x=.

∴EF=,AE=.

∵∠AEF=90°,

∴AF==.

∴此圆直径长为.

点评:本题考查了相似三角形的判定、二次函数的最值、三角函数、解直角三角形、圆周角定理、等边三角形的性质等知识,综合性强.利用圆周角定理将条件中的圆周角转化到合适的位置是解决最后一小题的关键.

14. (2014•湘潭,第26题)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,

(1)求二次函数解析式;

(2)若=,求k;

(3)若以BC为直径的圆经过原点,求k.

(第2题图)

考点:二次函数综合题.

分析:(1)由对称轴为x=﹣,且函数过(0,0),则可推出b,c,进而得函数解析式.

(2)=,且两三角形为同高不同底的三角形,易得=,考虑计算方便可作B,C对x轴的垂线,进而有B,C横坐标的比为=.由B,C为直线与二次函数的交点,则联立可求得B,C坐标.由上述倍数关系,则k易得.

(3)以BC为直径的圆经过原点,即∠BOC=90°,一般考虑表示边长,再用勾股定理构造方程求解k.可是这个思路计算量异常复杂,基本不考虑,再考虑(2)的思路,发现B,C横纵坐标恰好可表示出EB,EO,OF,OC.而由∠BOC=90°,易证△EBO∽△FOC,即EB•FC=EO•FO.有此构造方程发现k值大多可约去,进而可得k值.

解答:解:(1)∵二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,

∴﹣=2,0=0+0+c,

∴b=4,c=0,

∴y=﹣x2+4x.

(2)如图1,连接OB,OC,过点A作AE⊥y轴于E,过点B作BF⊥y轴于F,

∵=,

∴=,

∴=,

∵EB∥FC,

∴==.

∵y=kx+4交y=﹣x2+4x于B,C,

∴kx+4=﹣x2+4x,即x2+(k﹣4)x+4=0,

∴△=(k﹣4)2﹣4•4=k2﹣8k,

∴x=,或x=,

∵xB<xC,

∴EB=xB=,FC=xC=,

∴4•=,

解得 k=9(交点不在y轴右边,不符题意,舍去)或k=﹣1.

∴k=﹣1.

(3)∵∠BOC=90°,

∴∠EOB+∠FOC=90°,

∵∠EOB+∠EBO=90°,

∴∠EBO=∠FOC,

∵∠BEO=∠OFC=90°,

∴△EBO∽△FOC,

∴,

∴EB•FC=EO•FO.

∵xB=,xC=,且B、C过y=kx+4,

∴yB=k•+4,yC=k•+4,

∴EO=yB=k•+4,OF=﹣yC=﹣k•﹣4,

∴•=(k•+4)•(﹣k•﹣4),

整理得 16k=﹣20,

∴k=﹣.

点评:本题考查了函数图象交点的性质、相似三角形性质、一元二次方程及圆的基本知识.题目特殊,貌似思路不难,但若思路不对,计算异常复杂,题目所折射出来的思想,考生应好好理解掌握.

15. (2014•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.

(1)求AD的长;

(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;

(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.

(第3题图)

考点:相似形综合题.

分析:(1)过点C作CE⊥AB于E,根据CE=BC•sin∠B求出CE,再根据AD=CE即可求出AD;

(2)若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据≠且≠,得出△PCB与△ADP不相似.

(3)先求出S1=x•,再分两种情况讨论:①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM,在Rt△GBH中求出BG、BN、GN,在Rt△GMN中,求出MN=(x﹣1),在Rt△BMN中,求出BM2=x2﹣x+,最后根据S1=x•BM2代入计算即可.②当0<x≤2时,S2=x(x2﹣x+),最后根据S=S1+S2=x(x﹣)2+x即可得出S的最小值.

解答:解:(1)过点C作CE⊥AB于E,

在Rt△BCE中,

∵∠B=60°,BC=4,

∴CE=BC•sin∠B=4×=2,

∴AD=CE=2.

(2)存在.若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,

则△PCB必有一个角是直角.

①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,

∴AP=AB﹣PB=2.

又由(1)知AD=2,在Rt△ADP中,tan∠DPA===,

∴∠DPA=60°,

∴∠DPA=∠CPB,

∴△ADP∽△CPB,

∴存在△ADP与△CPB相似,此时x=2.

②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,

∴PB=2,PC=2,

∴AP=3.

则≠且≠,此时△PCB与△ADP不相似.

(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=x•()2=x•,

①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;

作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.

在Rt△GBH中,BH=BC=2,∠MGB=30°,

∴BG=4,

∵BN=PB=(10﹣x)=5﹣x,

∴GN=BG﹣BN=x﹣1.

在Rt△GMN中,∴MN=GN•tan∠MGN=(x﹣1).

在Rt△BMN中,BM2=MN2+BN2=x2﹣x+,

∴S1=x•BM2=x(x2﹣x+).

②∵当0<x≤2时,S2=x(x2﹣x+)也成立,

∴S=S1+S2=x•+x(x2﹣x+)=x(x﹣)2+x.

∴当x=时,S=S1+S2取得最小值x.

点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.

16. (2014•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.

(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);

(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);

(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).

(第4题图)

考点:圆的综合题;等边三角形的性质;勾股定理;切线的性质;相似三角形的判定与性质;特殊角的三角函数值.

分析:(1)连接OA,如下图1,根据条件可求出AB,然后AC的高BH,求出BH就可以求出△ABC的面积.

(2)如下图2,首先考虑临界位置:当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;当线段AB所在的直线与圆O相切时,线段AB与圆O只有一个公共点,此时α=60°.从而定出α的范围.

(3)设AO与PM的交点为D,连接MQ,如下图3,易证AO∥MQ,从而得到△PDO∽△PMQ,△BMQ∽△BAO,又PO=OQ=BQ,从而可以求出MQ、OD,进而求出PD、DM、AM、CM的值.

解答:解:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.

∵AB与⊙O相切于点A,

∴OA⊥AB.

∴∠OAB=90°.

∵OQ=QB=1,

∴OA=1.

∴AB===.

∵△ABC是等边三角形,

∴AC=AB=,∠CAB=60°.

∵sin∠HAB=,

∴HB=AB•sin∠HAB

=×=.

∴S△ABC=AC•BH=××=.

∴△ABC的面积为.

(2)①当点A与点Q重合时,

线段AB与圆O只有一个公共点,此时α=0°;

②当线段A1B所在的直线与圆O相切时,如图2所示,

线段A1B与圆O只有一个公共点,

此时OA1⊥BA1,OA1=1,OB=2,

∴cos∠A1OB==.

∴∠A1OB=60°.

∴当线段AB与圆O只有一个公共点(即A点)时,

α的范围为:0°≤α≤60°.

(3)连接MQ,如图3所示.

∵PQ是⊙O的直径,

∴∠PMQ=90°.

∵OA⊥PM,

∴∠PDO=90°.

∴∠PDO=∠PMQ.

∴△PDO∽△PMQ.

∴==

∵PO=OQ=PQ.

∴PD=PM,OD=MQ.

同理:MQ=AO,BM=AB.

∵AO=1,

∴MQ=.

∴OD=.

∵∠PDO=90°,PO=1,OD=,

∴PD=.

∴PM=.

∴DM=.

∵∠ADM=90°,AD=A0﹣OD=,

∴AM===.

∵△ABC是等边三角形,

∴AC=AB=BC,∠CAB=60°.

∵BM=AB,

∴AM=BM.

∴CM⊥AB.

∵AM=,[来源:学.科.网Z.X.X.K]

∴BM=,AB=.

∴AC=.

∴CM===.

∴CM的长度为.

点评:本题考查了等边三角形的性质、相似三角形的性质与判定、直线与圆相切、勾股定理、特殊三角函数值等知识,考查了用临界值法求角的取值范围,综合性较强.

17. (2014•株洲,第24题,10分)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.

(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;

(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;

(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.

(第5题图)

考点:二次函数综合题

分析:(1)由判别式△=(k+2)2﹣4×1×=k2﹣k+2=(k﹣)2+>0,即可证得无论k取何实数值,抛物线总与x轴有两个不同的交点;

(2)由抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,可得x1•x2=,x3=﹣(k+1),继而可求得答案;

(3)由CA•GE=CG•AB,易得△CAG∽△CBE,继而可证得△OAD∽△OBE,则可得,又由抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,可得OA•OB=,OD=,OE=(k+1)2,继而求得点B的坐标为(0,k+1),代入解析式即可求得答案.

解答:(1)证明:∵△=(k+2)2﹣4×1×=k2﹣k+2=(k﹣)2+,

∵(k﹣)2≥0,

∴△>0,

∴无论k取何实数值,抛物线总与x轴有两个不同的交点;

(2)解:∵抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,

∴x1•x2=,

令0=(k+1)x+(k+1)2,

解得:x=﹣(k+1),

即x3=﹣(k+1),

∴x1•x2•x3=﹣(k+1)•=﹣(k+)2+,

∴x1•x2•x3的最大值为:;

(3)解:∵CA•GE=CG•AB,

∴,

∵∠ACG=∠BCE,

∴△CAG∽△CBE,

∴∠CAG=∠CBE,

∵∠AOD=∠BOE,

∴△OAD∽△OBE,

∴,

∵抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,

∴OA•OB=,OD=,OE=(k+1)2,

∴OA•OB=OD,

∴,

∴OB2=OE,

∴OB=k+1,

∴点B(k+1,0),

将点B代入抛物线y=x2﹣(k+2)x+得:(k+1)2﹣(k+2)(k+1)﹣=0,

解得:k=2,

∴抛物线的解析式为:y=x2﹣4x+3.

点评:此题属于二次函数的综合题,综合性很强,难度较大,主要考查了一次函数与二次函数的性质、待定系数法求函数的解析式以及相似三角形的判定与性质.注意掌握数形结合思想与方程思想的应用.

18. (2014•扬州,第28题,12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(第6题图)

(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.

①求证:△OCP∽△PDA;

②若△OCP与△PDA的面积比为1:4,求边AB的长;

(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;

(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.

考点:相似形综合题;全等三角形的判定与性质;等腰三角形的判定与性质;勾股定理;矩形的性质;特殊角的三角函数值.

专题:综合题;动点型;探究型.

分析:(1)只需证明两对对应角分别相等即可证到两个三角形相似,然后根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.

(2)由DP=DC=AB=AP及∠D=90°,利用三角函数即可求出∠DAP的度数,进而求出∠OAB的度数.

(3)由边相等常常联想到全等,但BN与PM所在的三角形并不全等,且这两条线段的位置很不协调,可通过作平行线构造全等,然后运用三角形全等及等腰三角形的性质即可推出EF是PB的一半,只需求出PB长就可以求出EF长.

解答:解:(1)如图1,

①∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.

由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO.∠APO=∠B.

∴∠APO=90°.

∴∠APD=90°﹣∠CPO=∠POC.

∵∠D=∠C,∠APD=∠POC.

∴△OCP∽△PDA.

②∵△OCP与△PDA的面积比为1:4,

∴====.

∴PD=2OC,PA=2OP,DA=2CP.

∵AD=8,∴CP=4,BC=8.

设OP=x,则OB=x,CO=8﹣x.

在Rt△PCO中,

∵∠C=90°,CP=4,OP=x,CO=8﹣x,

∴x2=(8﹣x)2+42.

解得:x=5.

∴AB=AP=2OP=10.

∴边AB的长为10.

(2)如图1,

∵P是CD边的中点,

∴DP=DC.

∵DC=AB,AB=AP,

∴DP=AP.

∵∠D=90°,

∴sin∠DAP==.

∴∠DAP=30°.

∵∠DAB=90°,∠PAO=∠BAO,∠DAP=30°,

∴∠OAB=30°.

∴∠OAB的度数为30°.

(3)作MQ∥AN,交PB于点Q,如图2.

∵AP=AB,MQ∥AN,

∴∠APB=∠ABP,∠ABP=∠MQP.

∴∠APB=∠MQP.

∴MP=MQ.

∵MP=MQ,ME⊥PQ,

∴PE=EQ=PQ.

∵BN=PM,MP=MQ,

∴BN=QM.

∵MQ∥AN,

∴∠QMF=∠BNF.

在△MFQ和△NFB中,

∴△MFQ≌△NFB.

∴QF=BF.

∴QF=QB.

∴EF=EQ+QF=PQ+QB=PB.

由(1)中的结论可得:

PC=4,BC=8,∠C=90°.

∴PB==4.

∴EF=PB=2.

∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,长度为2.

点评:本题是一道运动变化类的题目,考查了相似三角形的性质和判定、全等三角形的性质和判定、矩形的性质、等腰三角形的性质和判定、勾股定理、特殊角的三角函数值等知识,综合性比较强,而添加适当的辅助线是解决最后一个问题的关键.

19.(2014•滨州,第25题12分)如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,OP交AC于点Q.

(1)求证:△APQ∽△CDQ;

(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.

①当t为何值时,DP⊥AC?

②设S△APQ+S△DCQ=y,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.

考点:相似形综合题

分析:(1)求证相似,证两对角相等即可,因为平行,易找,易证.

(2)①当垂直时,易得三角形相似,故有相似边成比例,由题中已知矩形边长则AP长已知,故t易知.

②因为S△APQ+S△DCQ=y,故求S△APQ和S△DCQ是解决问题的关键,观察无固定组合规则图象,则考虑作高分别求取.考虑两高在同一直线上,且相加恰为10,故可由(1)相似结论得,高的比等于对应边长比,设其中一高为h,即可求得,则易表示y=,注意要考虑t的取值.讨论何时y最小,y=不是我们学过的函数类型,故无法用最值性质来讨论,回观察题目问法为“探究P点运动到第几秒到第几秒之间时”,<1>并不是我们常规的在确定时间最小,<2>时间问的整数秒.故可考虑将所有可能的秒全部算出,再观察数据探究函数的变化找结论.

解答:(1)证明:∵四边形ABCD是矩形,

∴AB∥CD,

∴∠QPA=∠QDC,∠QAP=∠QCD,

∴△APQ∽△CDQ.

(2)解:①当DP⊥AC时,∠QCD+∠QDC=90°,

∵∠ADQ+∠QCD=90°,

∴∠DCA=∠ADP,

∵∠ADC=∠DAP=90°,

∴△ADC∽△PAD,

∴=,

∴,

解得 PA=5,

∴t=5.

②设△ADP的边AP上的高h,则△QDC的边DC上的高为10﹣h.

∵△APQ∽△CDQ,

∴==,

解得 h=,

∴10﹣h=,

∴S△APQ==,S△DCQ==,

∴y=S△APQ+S△DCQ=+=(0≤t≤20).

探究:

t=0,y=100;

t=1,y≈95.48;

t=2,y≈91.82;

t=3,y≈88.91;

t=4,y≈86.67;

t=5,y=85;

t=6,y≈83.85;

t=7,y≈83.15;

t=8,y≈82.86;

t=9,y≈82.93;

t=10,y≈83.33;

t=11,y≈84.03;

t=12,y=85;

t=13,y≈86.21;

t=14,y≈87.65;

t=15,y≈89.29;

t=16,y≈91.11;

t=17,y≈93.11;

t=18,y≈95.26;

t=19,y≈97.56;

t=20,y=100;

观察数据知:

当0≤t≤8时,y随t的增大而减小;

当9≤t≤20时,y随t的增大而增大;

故y在第8秒到第9秒之间取得最小值.

点评:本题主要考查了三角形相似及相似图形性质等问题,(2)②是一道非常新颖的考点,它考察了考生对函数本身的理解,作为未知函数类型如何探索其变化趋势是非常需要学生能力的.总体来说,本题是一道非常好、非常新的题目.

20.(2014年山东泰安,第28题)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.

(1)求证:=;

(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.

分析:(1)利用相似三角形的判定得出△ABE∽△ACB,进而求出答案;

(2)首先证明AD=BF,进而得出AD∥BF,即可得出四边形ABFD是平行四边形,再利用AD=AB,得出四边形ABFD是菱形.

证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,

又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;

(2)设AE=x,∵AE:EC=1:2,∴EC=2x,

由(1)得:AB2=AE•AC,∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,

∵F是BC中点,∴BF=x,∴BF=AB=AD,

又∵∠ADB=∠ACB=∠ABD,∴∠ADB=∠CBD=30°,∴AD∥BF,

∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.

点评:此题主要考查了相似三角形的判定与性质以及菱形的判定等知识,得出△ABE∽△ACB是解题关键.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56398 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握