正多边形与圆
一、选择题
1. ( 2014•广西玉林市、防城港市,第11题3分)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有( )
2.(2014年天津市,第6 题3分)正六边形的边心距为,则该正六边形的边长是( )
A. B. 2 C. 3 D. 2
x§k§b 1
考点: 正多边形和圆.
分析: 运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.
解答: 解:∵正六边形的边心距为,
∴OB=,AB=OA,
∵OA2=AB2+OB2,
∴OA2=(OA)2+()2,[来源:学&科&网Z&X&X&K]
解得OA=2.
故选B.
点评: 本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.
二.填空题
1. (2014年江苏南京,第12题,2分)如图,AD是正五边形ABCDE的一条对角线,则∠BAD= .
(第1题图)
考点:正多边形的计算
分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.
解答:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,
∴∠BAD=∠DOB=72°,故答案是:72°.
点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.