当前位置:首页 > 中考 > 数学

2014年中考数学试题解析分类汇编04 一元一次方程及其应用

试卷简介

这份试卷涵盖了多个数学领域,包括一元一次方程及其应用、几何问题、函数解析式以及实际问题的解决。选择题部分涉及到了不同情境下的体积计算和比例分配;填空题则考察了解方程的基本技巧;解答题方面,则包含了对实际生活问题的抽象和建模,例如行程问题、利润计算以及几何图形的计算。这些题目旨在检验学生对于数学概念的理解、方程的应用能力以及解决实际问题的能力。

所涉及的知识点

- 一元一次方程的解法及其在实际问题中的应用。 - 圆柱体体积计算及比例分配。 - 行程问题中的速度、时间和距离的关系。 - 函数解析式的构建与求解。 - 实际问题的数学建模与解决策略。

一元一次方程及其应用

一、选择题

1.(2014·台湾,第19题3分)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3︰4︰5.若不计杯子厚度,则甲杯内水的高度变为多少公分?(  )

A.5.4 B.5.7 C.7.2 D.7.5

分析:根据甲、乙、丙三杯内水的高度比变为3︰4︰5,设后来甲、乙、丙三杯内水的高度为3x、4x、5x,由表格中的数据列出方程,求出方程的解得到x的值,即可确定出甲杯内水的高度.

解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,

根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,

解得:x=2.4,

则甲杯内水的高度变为3×2.4=7.2(公分).

故选C.

点评:此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.

2.(2014•滨州,第4题3分)方程2x﹣1=3的解是( )

二、填空题

1.(2014•浙江湖州,第11题4分)方程2x﹣1=0的解是x=  .

分析:此题可有两种方法:

(1)观察法:根据方程解的定义,当x=时,方程左右两边相等;

(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.

解:移项得:2x=1,系数化为1得:x=.

点评:此题虽很容易,但也要注意方程解的表示方法:填空时应填x=,不能直接填.

2. (2014•湘潭,第15题,3分)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为 2x+56=589﹣x .

新*课*标*第*一*网]

三、解答题

1. (2014•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).

参考数据:

sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;

sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.

(第1题图)

2. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:

(进价、售价均保持不变,利润=销售收入﹣进货成本)

(1)求A、B两种型号的电风扇的销售单价;

(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?

(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

3. (2014•株洲,第20题,6分)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:

(1)他下山时的速度比上山时的速度每小时快1千米;

(2)他上山2小时到达的位置,离山顶还有1千米;

(3)抄近路下山,下山路程比上山路程近2千米;

(4)下山用1个小时;

根据上面信息,他作出如下计划:

(1)在山顶游览1个小时;

(2)中午12:00回到家吃中餐.

若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?

4. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.

(1)小明骑车在平路上的速度为  km/h;他途中休息了  h;

(2)求线段AB、BC所表示的y与x之间的函数关系式;

(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?

(第4题图)

考点:一次函数的解析式的运用,一元一次方程的运用

分析: (1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;

(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;

(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.

解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,

∴小明骑车在上坡路的速度为:15﹣5=10,

小明骑车在上坡路的速度为:15+5=20.

∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,

∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.

∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.

故答案为:15,0.1

(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).

小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).

设直线AB的解析式为y=k1x+b1,由题意,得,解得:,

∴y=10x+1.5(0.3≤x≤0.5);

设直线BC的解析式为y=k2+b2,由题意,得,解得:,

∴y=﹣20x+16.5(0.5<x≤0.6)

(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得

10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.

点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.

5. (2014•泰州,第20题,8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.

(1)该运动员去年的比赛中共投中多少个3分球?

(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.

6.(2014·浙江金华,第20题8分)一种长方形餐桌的四周可坐6 从用餐,现把若干张这样的餐桌按如图方式拼接.

(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?

(2)若用餐的人数有90人,则这样的餐桌需要多少张?

【答案】(1)18,34;(2)22.

【解析】

7.(2014•浙江宁波,第24题10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)

A方法:剪6个侧面; B方法:剪4个侧面和5个底面.

现有19张硬纸板,裁剪时x张用A方法,其余用B方法.

(1)用x的代数式分别表示裁剪出的侧面和底面的个数;

(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?

8.(2014•滨州,第19题3分)(1)解方程:2﹣=

9.(2014•德州,第20题8分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:

(1)如何进货,进货款恰好为46000元?

(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?

10.(2014•菏泽,第17题7分)(1)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输,某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56428 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握