二次根式
一、选择题
1.(2014•武汉,第2题3分)若在实数范围内有意义,则x的取值范围是( )
2.(2014•邵阳,第1题3分)介于( )
3.(2014•孝感,第3题3分)下列二次根式中,不能与合并的是( )
4. ( 2014•安徽省,第6题4分)设n为正整数,且n<<n+1,则n的值为( )
A. 5 B. 6 C. 7 D. 8
考点: 估算无理数的大小.
分析: 首先得出<<,进而求出的取值范围,即可得出n的值.
解答: 解:∵<<,
∴8<<9,
∵n<<n+1,
∴n=8,
故选;D.
点评: 此题主要考查了估算无理数,得出<<是解题关键.
5.(2014·台湾,第1题3分)算式(+×)×之值为何?( )
A.2 B.12 C.12 D.18
分析:先算乘法,再合并同类二次根式,最后算乘法即可.
解:原式=(+5)×
=6×
=18,
故选D.
点评:本题考查了二次根式的混合运算的应用,主要考查学生的计算能力,题目比较好,难度适中.
6.(2014·云南昆明,第4题3分)下列运算正确的是( )x_k_b_1
A. B.
C. D.
7.(2014•浙江湖州,第3题3分)二次根式中字母x的取值范围是( )
A.x<1 B. x≤1 C. x>1 D. x≥1
分析:根据被开方数大于等于0列式计算即可得解.
解:由题意得,x﹣1≥0,解得x≥1.故选D.
点评:本题考查的知识点为:二次根式的被开方数是非负数.
8.(2014·浙江金华,第5题4分)在式子中,x可以取2和3的是【 】
A. B. C. D.
【答案】C.
【解析】
试题分析:根据二次根式被开方数必须是非负数和分式分母不为0的条件,在式子,
9. (2014•湘潭,第2题,3分)下列计算正确的是( )
10. (2014•湘潭,第6题,3分)式子有意义,则x的取值范围是( )
11. (2014•株洲,第2题,3分)x取下列各数中的哪个数时,二次根式有意义( )
12.(2014•呼和浩特,第8题3分)下列运算正确的是( )
13.(2014•济宁,第7题3分)如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是( )
二.填空题
1. ( 2014•福建泉州,第16题4分)已知:m、n为两个连续的整数,且m<<n,则m+n= 7 .
2.(2014年云南省,第9题3分)计算:﹣= .
考点: 二次根式的加减法.
分析: 运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.
解答: 解:原式=2﹣=.
故答案为:.
点评: 合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.
3.(2014年广东汕尾,第11题5分)4的平方根是 .
分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.
解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.
点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
4. (2014年江苏南京,第9题,2分)使式子1+有意义的x的取值范围是 .
考点:二次根式
分析:根据被开方数大于等于0列式即可.
解答:由题意得,x≥0.故答案为:x≥0.
点评:本题考查的知识点为:二次根式的被开方数是非负数.
5.(2014•德州,第14题4分)若y=﹣2,则(x+y)y= .
三.解答题
1.(2014•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.
2.( 2014•福建泉州,第19题9分)先化简,再求值:(a+2)2+a(a﹣4),其中a=.