当前位置:首页 > 中考 > 数学

2014年中考数学试题解析分类汇编:弧长与扇形面积

试卷简介

这份试卷涵盖了多个关于扇形面积、圆锥侧面积、弧长计算及几何图形的综合问题。试卷不仅包括选择题、填空题,还包含了一些复杂的解答题,要求学生综合运用圆锥、扇形、弓形等几何图形的知识来解决实际问题。

所涉及的知识点

主要知识点包括扇形面积和圆锥侧面积的计算,弧长的计算,以及几何图形(如圆、扇形、弓形、正多边形)的综合应用。

弧长与扇形面积

一、选择题

1. (2014•浙江杭州,第2题,3分)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为(  )

2. (2014•年山东东营,第5题3分)如图,已知扇形的圆心角为60°,半径为,则图中弓形的面积为(  )

  A. B. C. D.

考点: 扇形面积的计算.菁优网

分析: 过A作AD⊥CB,首先计算出BC上的高AD长,再计算出三角形ABC的面积和扇形面积,然后再利用扇形面积减去三角形的面积可得弓形面积.

解答: 解:过A作AD⊥CB,

∵∠CAB=60°,AC=AB,

∴△ABC是等边三角形,

∵AC=,

∴AD=AC•sin60°=×=,

∴△ABC面积:=,

∵扇形面积:=,

∴弓形的面积为:﹣=,

故选:C.

点评: 此题主要考查了扇形面积的计算,关键是掌握扇形的面积公式:S=.

3.(2014•四川泸州,第7题,3分)一个圆锥的底面半径是,其侧面展开图为半圆,则圆锥的母线长为(  )

4.(2014•四川南充,第9题,3分)如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是(  )

  A. B. 13π C. 25π D. 25

分析:连接BD,B′D,首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.

解:连接BD,B′D,∵AB=5,AD=12,∴BD==13,

∴==,∵==6π,

∴点B在两次旋转过程中经过的路径的长是:+6π=,故选:A.

点评: 此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=.

5.(2014•甘肃兰州,第1题4分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,则点B转过的路径长为(  )

2.

3.

4.

5.

6.

7.

8.

二、填空题

1. (2014•四川巴中,第15题3分)若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是  .

考点:圆锥的侧面展开图,等边三角形的性质.

分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到扇形的弧长为4π,扇形的半径为4,再根据弧长公式求解.

解答:设这个圆锥的侧面展开后所得到的扇形的圆心角的度数为n,根据题意得4π=,解得n=180°.故答案为180°.

点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

2. (2014•山东威海,第18题3分)如图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是 ﹣ .

3. (2014•山东枣庄,第16题4分)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为 4﹣π cm2.

4. (2014•山东潍坊,第15题3分)如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)

考点:相交两圆的性质;菱形的性质.

分析:连接O1O2,由题意知,四边形AO1BO2B是菱形,且△AO1O2,△BO1O2都是等边三角形,四边形O1AO2B的面积等于两个等边三角形的面积.据此求阴影的面积.

解答:连接O1O2,由题意知,四边形AO1BO2B是菱形,且△AO1O2,△BO1O2都是等边三角形,四边形O1AO2B的面积等于两个等边三角形的面积,∴SO1AO2B=2×

S扇形AO1B= ∴S阴影=2(S扇形AO1B- SO1AO2B)=

故答案为:

点评:本题利用了等边三角形判定和性质,等边三角形的面积公式、扇形面积公式求解.

5. (2014•山东烟台,第17题3分)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于  .

考点:圆内接正多边形,求阴影面积.

分析:先正确作辅助线,构造扇形和等边三角形、直角三角形,分别求出两个弓形的面积和两个三角形面积,即可求出阴影部分的面积.

解答:连接OC、OD、OE,OC交BD于M,OE交DF于N,过O作OZ⊥CD于Z,

∵六边形ABCDEF是正六边形,

∴BC=CD=DE=EF,∠BOC=∠COD=∠DOE=∠EOF=60°,

由垂径定理得:OC⊥BD,OE⊥DF,BM=DM,FN=DN,

∵在Rt△BMO中,OB=4,∠BOM=60°,

∴BM=OB×sin60°=2,OM=OB•cos60°=2,∴BD=2BM=4,

∴△BDO的面积是×BD×OM=×4×2=4,同理△FDO的面积是4;

∵∠COD=60°,OC=OD=4,∴△COD是等边三角形,∴∠OCD=∠ODC=60°,

在Rt△CZO中,OC=4,OZ=OC×sin60°=2,

∴S扇形OCD﹣S△COD=﹣×4×2=π﹣4,

∴阴影部分的面积是:4+4+π﹣4+π﹣4=π,故答案为:π.

点评:本题考查了正多边形与圆及扇形的面积的计算的应用,解题的关键是求出两个弓形和两个三角形面积,题目比较好,难度适中.

6. (2014•山东聊城,第15题,3分)如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 300π .

7. (2014•浙江杭州,第16题,4分)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于 πr或r (长度单位).

 8.(2014•遵义15.(4分))有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是 60π cm2.(结果保留π)

9.(2014•十堰16.(3分))如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为 2π﹣4 .

 10. (2014•江苏徐州,第13题3分)半径为,圆心角为60°的扇形的面积为 π cm2.

考点: 扇形面积的计算.菁优网

分析: 直接利用扇形面积公式求出即可.

解答: 解:半径为,圆心角为60°的扇形的面积为:=π(cm2).

故答案为:π.

点评: 此题主要考查了扇形的面积公式应用,熟练记忆扇形面积公式是解题关键.

11. (2014•江苏盐城,第17题3分)如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是 ﹣ .

12.(2014•四川遂宁,第13题,4分)已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是 20π (结果保留π).

13.(2014•四川内江,第25题,6分)通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为 2014 .

14.(2014•广州,第14题3分)一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为_______(结果保留).

【考点】三视图的考察、圆锥体全面积的计算方法

【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+底面积,底面积为圆的面积为:,侧面积为扇形的面积,首先应该先求出扇形的半径R,由勾股定理得,,则侧面积,全面积.

【答案】

7.

8.

三、解答题

1.(2014•湖南怀化,第22题,10分)如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F

(1)求证:△ADE∽△BEF;

(2)设H是ED上一点,以EH为直径作⊙O,DF与⊙O相切于点G,若DH=OH=3,求图中阴影部分的面积(结果保留到小数点后面第一位,≈1.73,π≈3.14).

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56435 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握