解直角三角形
一、选择题
1. (2014•浙江杭州,第3题,3分)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=( )
2. (2014•浙江杭州,第10题,3分)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则( )
3. (2014•江苏苏州,第9题3分)如图,港口A在观测站O的正东方向,OA=,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为( )
4. (2014•山东临沂,第13题3分)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为( )
5.(2014•四川凉山州,第5题,4分)如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=,则坡面AB的长度是( )
2.
3.
4.
5.
6.
7.
8.
二、填空题
1. (2014•上海,第12题4分)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 26 米.
2. (2014•山东潍坊,第17题3分)如图,某水平地面上建筑物的高度为AB,在点D和
点F处分别竖立高是2米的CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是 米.
考点:解直角三角形的应用-仰角俯角问题.
分析:根据AB∥CD∥FE,可得△ABG∽△CDG,△ABH∽△EFH,可得CD:AB=DG:BG, EF:AB=FH:BH,即可求得AB的值,即可解题.
解答:∵△ABG∽△CDG,∴CD:AB=DG:BG ∵CD=DG=2, AB=BG
∵△ABH∽△EFH,∴EF:AB=FH:BH,∵EF=2,FH=4 ∴BH=2AB ∴BH=2BG=2GH
∵GH=DH-DG=DF=FH-DG=52-2+4=54,∴AB=BG=GH=54.
故答案为:54
点评:本题考查了相似三角形对应边比值相等的性质,考查了平行线定理,本题中列出关于GH、BH的关系式并求解是解题的关键.
3.(2014•湖南怀化,第13题,3分)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=,此时,他离地面高度为h=,则这个土坡的坡角∠A= 30 °.
落千丈
4.(2014•四川内江,第23题,6分)如图,∠AOB=30°,OP平分∠AOB,PC⊥OB于点C.若OC=2,则PC的长是 .
5.
6.
7.
8.
三、解答题
1. (2014•四川巴中,第27题9分)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)°.
考点:解直角三角形的应用.
分析:过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.
解答:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,
由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,
在Rt△ABE中,BE=20米,=,∴AE=50米.
在Rt△CFD中,∠D=30°,∴DF=CFcot∠D=20米,
∴AD=AE+EF+FD=50+6+20≈90.6(米).故坝底AD的长度约为90.6米.
点评:本题考查了坡度及坡角的知识,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.
2. (2014•山东枣庄,第21题8分)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.
(1)求B点到OP的距离;
(2)求滑动支架的长.
(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
3. (2014•山东潍坊,第21题10分)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是450,然后:沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是600,求两海岛间的距离AB.
考点:解直角三角形的应用-仰角俯角问题.
分析:首先过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,易得四边形ABFE为矩形,根据矩形的性质,可得AB=EF,AE=BF.由题意可知:AE=BF=100米,CD=500米,然后分别在Rt△AEC与Rt△BFD中,利用三角函数即可求得CE与DF的长,继而求得岛屿两端A、B的距离.
解答:如图,过点A作AE⊥CD于点E,过点B作BF上CD,交CD的延长线于点F,
则四边形ABFE为矩形,所以AB=EF, AE=BF,
由题意可知AE=BF=1100—200=900,CD=19900.
∴在Rt△AEC中,∠C=450, AE=900, ∴
在Rt△BFD中,∠BDF=600,BF=900,BF=900 ∴
∴ AB=EF=CD+DF-CE=19900+-900=19000+
答:两海岛之间的距离AB是(19000+300√3)米
点评:此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.
4. (2014•山东烟台,第21题7分)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.
考点:解直角三角形的应用.
分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,
再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.
解答:延长OA交BC于点D.∵AO的倾斜角是60°,
∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.
在Rt△ACD中,AD=AC•tan∠ACD=•=(米),
∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,
∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).
答:浮漂B与河堤下端C之间的距离为1.5米.
点评:本题考查了解直角三角形的应用﹣坡度坡角问题,作出辅助线得到Rt△ACD是解题的关键.
5.(2014•湖南怀化,第21题,10分)两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部
(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.
6.(2014•湖南张家界,第21题,8分)如图:我渔政310船在南海海面上沿正东方向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B点,观测到我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?(渔船C捕鱼时移动距离忽略不计,结果不取近似值.)
7. (2014•江西抚州,第21题,9分) 如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2.晾衣架伸缩时,点在射线上滑动,∠的大小也随之发生变化.已知每个菱形边长均等于 ,且= .
⑴ 当∠=60°时,求两点间的距离;
⑵ 当∠由60°变为120°时,点向左移动了多少cm ?(结果精确到)
⑶ 设cm ,当∠的变化范围为60°~ 120°(包括端点值)时,求的取值范围 .(结果精确到)
(参考数据 ,可使用科学计算器)
解析:(1)如图1,
∵每个菱形的边长都是20㎝,
且DE=20㎝, ∴CE=DE,
∵∠CED=60°,
∴⊿CED是等边三角形,
∴CD=, ∴C、D两点之间的距离是.
(2)如图2,
作EH⊥CD于H,
在⊿CED中,CE=DE,
∠CED=120°
∴∠ECD=30°,∴EH=CE=10,
∴CH=10 , ∴CD=20,
∴点C向左移动了(20-20),
∴点A向左移动了(20-20)×3≈ .
(3)如图1,当∠CED=60°时, ∵ED=EG, ∠CGD=30°,
在Rt⊿CGD中, ,∵CG=40,
∴DG=20≈34.6;
如图2,当∠CED=120°时, ∠CGD=60°,
∴DG=CG=20, ∴20≤≤34.6.
8.(2014•山东聊城,第21题,8分)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带称为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=,求观景台D到徒骇河西岸AC的距离约为多少米(精确到).(tan60°≈1.73,tan75°≈3.73)
9.(2014年贵州黔东南)黔东南州22.(10分)某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)
考点: 解直角三角形的应用-仰角俯角问题.菁优网
分析: 过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25m.由小明站在B点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m.在Rt△CEN中,由tan∠ECN==,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF.
解答: 解:过点A作AM⊥EF于M,过点C作CN⊥EF于N,
∴MN=0.25m,
∵∠EAM=45°,
∴AM=ME,
设AM=ME=xm,
则CN=(x+6)m,EN=(x﹣0.25)m,
∵∠ECN=30°,
∴tan∠ECN===,
解得:x≈8.8,
则EF=EM+MF≈8.8+1.5=10.3(m).
答:旗杆的高EF为10.3m.
点评: 本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.
10.(2014•遵义21.(8分))如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)
11.(2014•十堰15.(3分))如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是 24 海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)
12.(2014•娄底22.(8分))如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)
13.(( 2014年河南) 19.9分)在中俄“海上联合—反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。参考数据:sin680≈0.9,cos680≈0.4,,tan680≈2.5. ≈1.7)
解:过点C作CD⊥AB,交BA的延长线于点D.则AD即为潜艇C的下潜深度.
根据题意得 ∠ACD=300,∠BCD=680.
设AD=x.则BD=BA十AD=1000+x.
在Rt△ACD中,
CD=……………4分
在Rt△BCD中,BD=CD·tan688
∴1000+x=x·tan688 …………………………………………………7分
∴x=
∴潜艇C离开海平面的下潜深度约为。……………………9分
14. (2014•江苏徐州,第25题8分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距的点B处,再航行至位于点A的南偏东75°且与点B相距的点C处.
(1)求点C与点A的距离(精确到);
(2)确定点C相对于点A的方向.
(参考数据:≈1.414,≈1.732)
考点: 解直角三角形的应用-方向角问题.菁优网
分析: (1)作辅助线,构造直角三角形,解直角三角形即可;
(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.
解答: 解:(1)如右图,过点A作AD⊥BC于点D.
由图得,∠ABC=75°﹣10°=60°.
在Rt△ABD中,∵∠ABC=60°,AB=100,
∴BD=50,AD=50.
∴CD=BC﹣BD=200﹣50=150.
在Rt△ACD中,由勾股定理得:
AC==100≈173(km).
答:点C与点A的距离约为.
(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,
BC2=2002=40000,
∴AB2+AC2=BC2,
∴∠BAC=90°,
∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.
答:点C位于点A的南偏东75°方向.
点评: 考查了解直角三角形的应用﹣方向角问题,关键是熟练掌握勾股定理,体现了数学应用于实际生活的思想.
15. (2014•江苏盐城,第23题10分)盐城电视塔是我市标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测电视塔的高度AB.小明在D处用高的测角仪CD,测得电视塔顶端A的仰角为30°,然后向电视塔前进到达E处,又测得电视塔顶端A的仰角为60°.求电视塔的高度AB.(取1.73,结果精确到)
16. (2014•年山东东营,第22题8分)热气球的探测器显示,从热气球底部A处看一栋高楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球A处与高楼的水平距离为,这栋高楼有多高(≈1.732,结果保留小数点后一位)?
考点: 解直角三角形的应用-仰角俯角问题.菁优网
分析: 过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数即可求得BD和CD,即可求解.
解答: 解:过A作AD⊥BC,垂足为D.
在Rt△ABD中,
∵∠BAD=30°,AD=,
∴BD=AD•tan30°=120×=40m,
在Rt△ACD中,
∵∠CAD=60°,AD=,
∴CD=AD•tan60°=120×=120m,
BC=40=277.12≈.
答:这栋楼高约为.
点评: 本题主要考查了仰角与俯角的计算,一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.
17.(2014•四川遂宁,第22题,10分)如图,根据图中数据完成填空,再按要求答题:
sin1+sin2B1= 1 ;sin2+sin2B2= 1 ;sin3+sin2B3= 1 .
(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B= 1 .
(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.
(3)已知:∠A+∠B=90°,且sinA=,求sinB.
18.(2014•四川泸州,第22题,8分)海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)
19.(2014•四川内江,第20题,9分)“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:≈1.7)
20.(2014•四川南充,第22题,8分)马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).
(1)求可疑漂浮物P到A、B两船所在直线的距离;
(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.
分析: (1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;
(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断.
解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=36.5°,∠PBA=45,
设PE为x海里,则BE=PE=x海里,
∵AB=140海里,∴AE=(140﹣x)海里,
在Rt△PAE中,,即:解得:x=60海里,
∴可疑漂浮物P到A、B两船所在直线的距离为60海里;
(2)在Rt△PBE中,PE=60海里,∠PBE=45°,
则BP=PE=60≈84.8海里,
B船需要的时间为:≈2.83小时,
在Rt△PAE中,=sin∠PAE,∴AP=PE÷sin∠PAE=60÷0.6=100海里,
∴A船需要的时间为:100÷40=2.5,∵2.83>2.5,∴A船先到达.
点评: 本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.
21.(2014•甘肃白银、临夏,第22题8分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条只显示,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)
(1)求车架档AD的长;
(2)求车座点E到车架档AB的距离(结果精确到1cm).
22.(2014•甘肃兰州,第24题8分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).