2014年北京市高级中等学校招生考试
数学试卷
学校 姓名 准考证号
一、选择题(本题共32分,每小题4分)
下面各题均有四个选项,其中只有一个是符合题意的.
1.2的相反数是
A.2 B. C. D.
2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为
A. B. C. D.
3.如图,有6张扑克处于,从中随机抽取一张,点数为偶数的概率是
A. B. C. D.
4.右图是几何体的三视图,该几何体是
A.圆锥 B.圆柱
C.正三棱柱 D.正三棱锥
5.某篮球队12名队员的年龄如下表所示:
则这12名队员年龄的众数和平均数分别是
A.18,19 B.19,19 C.18, D.19,
6.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积(单位:平方米)与工作时间(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为
A.40平方米 B.50平方米
C.80平方米 D.100平方米
7.如图.的直径垂直于弦,垂足是,,,的长为
A. B.
C. D.8
8.已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周.设点运动的时间为,线段的长为.表示与的函数关系的图象大致如右图所示,则该封闭图形可能是
二、填空题(本题共16分,每小题4分)
9.分解因式:.
10.在某一时刻,测得一根高为m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为 m.
11.如图,在平面直角坐标系中,正方形的边长为2.写出一个函数,使它的图象与正方形有公共点,这个函数的表达式为 .
12.在平面直角坐标系中,对于点,我们把点叫做点的伴随点,已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,….若点的坐标为(3,1),则点的坐标为 ,点的坐标为 ;若点的坐标为(,),对于任意的正整数,点均在轴上方,则,应满足的条件为 .
三、解答题(本题共30分,每小题5分)
13.如图,点在线段上,,,.
求证:.
14.计算:.
15.解不等式,并把它的解集在数轴上表示出来.
16.已知,求代数式的值.
17.已知关于的方程.
(1)求证:方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数的值.
18.列方程或方程组解应用题:
小马自驾私家车从地到地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多元,求新购买的纯电动汽车每行驶1千米所需的电费.
四、解答题(本题共20分,每小题5分)
19.如图,在中,平分,交于点,平分,交于点,与交于点,连接,.
(1)求证:四边形是菱形;
(2)若,,,求的值.
20.根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:
根据以上信息解答下列问题:
(1)直接写出扇形统计图中的值;
(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为 本;
(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为 本.
21.如图,是的直径,是的中点,的切线交的延长线于点,是的中点,的延长线交切线于点,交于点,连接.
(1)求证:;
(2)若,求的长.
22.阅读下面材料:
小腾遇到这样一个问题:如图1,在中,点在线段上,,,,,求的长.
小腾发现,过点作,交的延长线于点,通过构造,经过推理和计算能够使问题得到解决(如图2).
请回答:的度数为 ,的长为 .
参考小腾思考问题的方法,解决问题:
如图3,在四边形中,,,,与交于点,,,求的长.