当前位置:首页 > 中考 > 数学

2014年河北省中考数学试卷及答案解析

试卷简介

河北省2014年中考数学试卷包含选择题、填空题和解答题,全面考察学生的数学基础知识、运算能力、逻辑思维和应用能力。选择题部分共有16道题,每题2分,总分为32分;填空题部分共4道题,每题3分,总分为12分;解答题部分共6道题,分数分别为10分、10分、11分、11分、11分和13分,总分为66分。试题覆盖了代数、几何、概率等多个方面,旨在评估学生在这些领域的理解和应用能力。

所涉及的知识点

试卷涵盖了初中数学的主要知识点,包括代数运算、几何图形的性质、概率统计、函数图像及解析几何等。

河北省2014年中考数学试卷

一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.(2分)(2014•河北)﹣2是2的(  )

2.(2分)(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=(  )

3.(2分)(2014•河北)计算:852﹣152=(  )

4.(2分)(2014•河北)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是(  )

5.(2分)(2014•河北)a,b是两个连续整数,若a<<b,则a,b分别是(  )

6.(2分)(2014•河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为(  )

7.(3分)(2014•河北)化简:﹣=(  )

8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠(  )

9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为(  )

10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是(  )

11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是(  )

12.(3分)(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是(  )

13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:

甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.

乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.

对于两人的观点,下列说法正确的是(  )

14.(3分)(2014•河北)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是(  )

15.(3分)(2014•河北)如图,边长为a的正六边形内有两个三角形(数据如图),则=(  )

16.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是(  )

二、填空题(共4小题,每小题3分,满分12分)

17.(3分)(2014•河北)计算:= 2 .

18.(3分)(2014•河北)若实数m,n 满足|m﹣2|+(n﹣2014)2=0,则m﹣1+n0=  .

19.(3分)(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形= 4 cm2.

20.(3分)(2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.

将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;

再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;

继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.

则点P37所表示的数用科学记数法表示为 3.7×10﹣6 .

三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)

21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:

由于a≠0,方程ax2++bx+c=0变形为:

x2+x=﹣,…第一步

x2+x+()2=﹣+()2,…第二步

(x+)2=,…第三步

x+=(b2﹣4ac>0),…第四步

x=,…第五步

嘉淇的解法从第 四 步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是 x= .

用配方法解方程:x2﹣2x﹣24=0.

22.(10分)(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:

他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:

(1)求表中∠C度数的平均数:

(2)求A处的垃圾量,并将图2补充完整;

(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)

23.(11分)(2014•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.

(1)求证:△ABD≌△ACE;

(2)求∠ACE的度数;

(3)求证:四边形ABEF是菱形.

24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)nx2+bx+c(n为整数).

(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;

(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;

(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.

25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.

(1)点O到弦AB的距离是 1 ,当BP经过点O时,∠ABA′= 60 °;

(2)当BA′与⊙O相切时,如图2,求折痕的长:

(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.

26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.

探究:设行驶吋间为t分.

(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米) 与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;

(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.

发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.

情况一:若他刚好错过2号车,便搭乘即将到来的1号车;

情况二:若他刚好错过1号车,便搭乘即将到来的2号车.

比较哪种情况用时较多?(含候车时间)

决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点D,A重合)时,刚好与2号车迎面相遇.

(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:

(2)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56497 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握