当前位置:首页 > 中考 > 数学

2016年昆明市中考数学试题及答案解析版

试卷简介

这份试卷涵盖了初中数学中的多个重要概念和技能,包括相反数、科学记数法、分式加减、等腰三角形性质、平行线性质、矩形中点四边形、反比例函数、几何体的三视图、统计学中的众数和中位数、一元二次方程根的判别式、不等式组、代数运算、圆的性质、三角函数的应用、分式方程、全等三角形的判定、图形变换(平移、旋转、对称)、概率、函数图像及其应用、以及最值问题。

所涉及的知识点

本试卷涵盖了初中数学中基础且重要的知识点,重点考查学生对于数学概念的理解、基本运算能力以及解决实际问题的能力。

2016年云南省昆明市中考数学试卷

一、填空题:每小题3分,共18分

1.﹣4的相反数为      .

2.昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为      .

3.计算:﹣=      .

4.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为      .

5.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是      .

6.如图,反比例函数y=(k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为      .

二、选择题(共8小题,每小题4分,满分32分)

7.下面所给几何体的俯视图是(  )

A. B. C. D.

8.某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:

那么这9名学生所得分数的众数和中位数分别是(  )

A.90,90 B.90,85 C.90,87.5 D.85,85

9.一元二次方程x2﹣4x+4=0的根的情况是(  )

A.有两个不相等的实数根 B.有两个相等的实数根

C.无实数根 D.无法确定

10.不等式组的解集为(  )

A.x≤2 B.x<4 C.2≤x<4 D.x≥2

11.下列运算正确的是(  )

A.(a﹣3)2=a2﹣9 B.a2•a4=a8C. =±3 D. =﹣2

12.如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是(  )

A.EF∥CD B.△COB是等边三角形

C.CG=DG D.的长为π

13.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是(  )

A.﹣=20 B.﹣=20 C.﹣=D.﹣=

14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:

①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有(  )

A.1个 B.2个 C.3个 D.4个

三、综合题:共9题,满分70分

15.计算:20160﹣|﹣|++2sin45°.

16.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB

求证:AE=CE.

17.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)

(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;

(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;

(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.

18.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;

(1)这次抽样调查的样本容量是      ,并补全条形图;

(2)D等级学生人数占被调查人数的百分比为      ,在扇形统计图中C等级所对应的圆心角为      °;

(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.

19.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.

(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;

(2)求出两个数字之和能被3整除的概率.

20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)

21.(列方程(组)及不等式解应用题)

春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.

(1)求甲、乙两种商品每件的进价分别是多少元?

(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

22.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.

(1)求证:CF是⊙O的切线;

(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)

23.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A

(1)求抛物线的解析式;

(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;

(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

2016年云南省昆明市中考数学试卷

参考答案与试题解析

一、填空题:每小题3分,共18分

1.﹣4的相反数为 4 .

【考点】相反数.

【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解.

【解答】解:﹣4的相反数是4.

故答案为:4.

2.昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为 6.73×104 .

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67300有5位,所以可以确定n=5﹣1=4.

【解答】解:67300=6.73×104,

故答案为:6.73×104.

3.计算:﹣=  .

【考点】分式的加减法.

【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.

【解答】解:﹣

=

=

=.

故答案为:.

4.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为 40° .

【考点】等腰三角形的性质;平行线的性质.

【分析】由等腰三角形的性质证得E=∠F=20°,由三角形的外角定理证得∠CDF=∠E+∠F=40°,再由平行线的性质即可求得结论.

【解答】解:∵DE=DF,∠F=20°,

∴∠E=∠F=20°,

∴∠CDF=∠E+∠F=40°,

∵AB∥CE,

∴∠B=∠CDF=40°,

故答案为:40°.

5.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是 24 .

【考点】中点四边形;矩形的性质.

【分析】先根据E,F,G,H分别是矩形ABCD各边的中点得出AH=DH=BF=CF,AE=BE=DG=CG,故可得出△AEH≌△DGH≌△CGF≌△BEF,根据S四边形EFGH=S正方形﹣4S△AEH即可得出结论.

【解答】解:∵E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,

∴AH=DH=BF=CF=8,AE=BE=DG=CG=3.

在△AEH与△DGH中,

∵,

∴△AEH≌△DGH(SAS).

同理可得△AEH≌△DGH≌△CGF≌△BEF,

∴S四边形EFGH=S正方形﹣4S△AEH=6×8﹣4××3×4=48﹣24=24.

故答案为:24.

6.如图,反比例函数y=(k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为 ﹣ .

【考点】反比例函数系数k的几何意义;平行线分线段成比例.

【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.

【解答】解:设点B坐标为(a,b),则DO=﹣a,BD=b

∵AC⊥x轴,BD⊥x轴

∴BD∥AC

∵OC=CD

∴CE=BD=b,CD=DO=a

∵四边形BDCE的面积为2

∴(BD+CE)×CD=2,即(b+b)×(﹣a)=2

∴ab=﹣

将B(a,b)代入反比例函数y=(k≠0),得

k=ab=﹣

故答案为:﹣

二、选择题(共8小题,每小题4分,满分32分)

7.下面所给几何体的俯视图是(  )

A. B. C. D.

【考点】简单几何体的三视图.

【分析】直接利用俯视图的观察角度从上往下观察得出答案.

【解答】解:由几何体可得:圆锥的俯视图是圆,且有圆心.

故选:B.

8.某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:

那么这9名学生所得分数的众数和中位数分别是(  )

A.90,90 B.90,85 C.90,87.5 D.85,85

【考点】众数;中位数.

【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.

【解答】解:在这一组数据中90是出现次数最多的,故众数是90;

排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;

故选:A.

9.一元二次方程x2﹣4x+4=0的根的情况是(  )

A.有两个不相等的实数根 B.有两个相等的实数根

C.无实数根 D.无法确定

【考点】根的判别式.

【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.

【解答】解:在方程x2﹣4x+4=0中,

△=(﹣4)2﹣4×1×4=0,

∴该方程有两个相等的实数根.

故选B.

10.不等式组的解集为(  )

A.x≤2 B.x<4 C.2≤x<4 D.x≥2

【考点】解一元一次不等式组.

【分析】先求出每个不等式的解集,再根据口诀:大小小大中间找确定不等式组的解集即可.

【解答】解:解不等式x﹣3<1,得:x<4,

解不等式3x+2≤4x,得:x≥2,

∴不等式组的解集为:2≤x<4,

故选:C.

11.下列运算正确的是(  )

A.(a﹣3)2=a2﹣9 B.a2•a4=a8C. =±3 D. =﹣2

【考点】同底数幂的乘法;算术平方根;立方根;完全平方公式.

【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.

【解答】解:A、(a﹣3)2=a2﹣6a+9,故错误;

B、a2•a4=a6,故错误;

C、=3,故错误;

D、=﹣2,故正确,

故选D.

12.如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是(  )

A.EF∥CD B.△COB是等边三角形

C.CG=DG D.的长为π

【考点】弧长的计算;切线的性质.

【分析】根据切线的性质定理和垂径定理判断A;根据等边三角形的判定定理判断B;根据垂径定理判断C;利用弧长公式计算出的长判断D.

【解答】解:∵AB为⊙O的直径,EF切⊙O于点B,

∴AB⊥EF,又AB⊥CD,

∴EF∥CD,A正确;

∵AB⊥弦CD,

∴=,

∴∠COB=2∠A=60°,又OC=OD,

∴△COB是等边三角形,B正确;

∵AB⊥弦CD,

∴CG=DG,C正确;

的长为: =π,D错误,

故选:D.

13.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是(  )

A.﹣=20 B.﹣=20 C.﹣=D.﹣=

【考点】由实际问题抽象出分式方程.

【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.

【解答】解:由题意可得,

﹣=,

故选C.

14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:

①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有(  )

A.1个 B.2个 C.3个 D.4个

【考点】正方形的性质;全等三角形的判定与性质.

【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;

②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;

③同②证明△EHF≌△DHC即可;

④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.

【解答】解:①∵四边形ABCD为正方形,EF∥AD,

∴EF=AD=CD,∠ACD=45°,∠GFC=90°,

∴△CFG为等腰直角三角形,

∴GF=FC,

∵EG=EF﹣GF,DF=CD﹣FC,

∴EG=DF,故①正确;

②∵△CFG为等腰直角三角形,H为CG的中点,

∴FH=CH,∠GFH=∠GFC=45°=∠HCD,

在△EHF和△DHC中,,

∴△EHF≌△DHC(SAS),

∴∠HEF=∠HDC,

∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;

③∵△CFG为等腰直角三角形,H为CG的中点,

∴FH=CH,∠GFH=∠GFC=45°=∠HCD,

在△EHF和△DHC中,,

∴△EHF≌△DHC(SAS),故③正确;

④∵=,

∴AE=2BE,

∵△CFG为等腰直角三角形,H为CG的中点,

∴FH=GH,∠FHG=90°,

∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,

在△EGH和△DFH中,,

∴△EGH≌△DFH(SAS),

∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,

∴△EHD为等腰直角三角形,

过H点作HM垂直于CD于M点,如图所示:

设HM=x,则DM=5x,DH=x,CD=6x,

则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,

∴3S△EDH=13S△DHC,故④正确;

故选:D.

三、综合题:共9题,满分70分

15.计算:20160﹣|﹣|++2sin45°.

【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

【分析】分别根据零次幂、实数的绝对值、负指数幂及特殊角的三角函数值进行计算即可.

【解答】解:

20160﹣|﹣|++2sin45°

=1﹣+(3﹣1)﹣1+2×

=1﹣+3+

=4.

16.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB

求证:AE=CE.

【考点】全等三角形的判定与性质.

【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.

【解答】证明:∵FC∥AB,

∴∠A=∠ECF,∠ADE=∠CFE,

在△ADE和△CFE中,

∴△ADE≌△CFE(AAS),

∴AE=CE.

17.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)

(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;

(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;

(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.

【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.

【分析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;

(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;

(3)找出A的对称点A′,连接BA′,与x轴交点即为P.

【解答】解:(1)如图1所示:

(2)如图2所示:

(3)找出A的对称点A′(﹣3,﹣4),

连接BA′,与x轴交点即为P;

如图3所示:点P坐标为(2,0).

18.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;

(1)这次抽样调查的样本容量是 50 ,并补全条形图;

(2)D等级学生人数占被调查人数的百分比为 8% ,在扇形统计图中C等级所对应的圆心角为 28.8 °;

(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.

【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.

【分析】(1)由A等级的人数和其所占的百分比即可求出抽样调查的样本容量;求出B等级的人数即可全条形图;

(2)用B等级的人数除以总人数即可得到其占被调查人数的百分比;求出C等级所占的百分比,即可求出C等级所对应的圆心角;

(3)由扇形统计图可知A等级所占的百分比,进而可求出九年级学生其中A等级的学生人数.

【解答】解:

(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,

故答案为:50;

补全条形图如图所示:

(2)D等级学生人数占被调查人数的百分比=×100%=8%;

在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,

故答案为:8%,28.8;

(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.

19.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.

(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;

(2)求出两个数字之和能被3整除的概率.

【考点】列表法与树状图法;概率公式.

【分析】先根据题意画树状图,再根据所得结果计算两个数字之和能被3整除的概率.

【解答】解:(1)树状图如下:

(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,

∴两个数字之和能被3整除的概率为,

即P(两个数字之和能被3整除)=.

20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)

【考点】解直角三角形的应用-仰角俯角问题.

【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.

【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.

则DE=BF=CH=10m,

在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,

∴DF=AF=70m.

在直角△CDE中,∵DE=10m,∠DCE=30°,

∴CE===10(m),

∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).

答:障碍物B,C两点间的距离约为52.7m.

21.(列方程(组)及不等式解应用题)

春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.

(1)求甲、乙两种商品每件的进价分别是多少元?

(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

【考点】一次函数的应用;二元一次方程组的应用.

【分析】(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元”可列出关于x、y的二元一次方程组,解方程组即可得出两种商品的单价;

(2)设该商场购进甲种商品m件,则购进乙种商品件,根据“甲种商品的数量不少于乙种商品数量的4倍”可列出关于m的一元一次不等式,解不等式可得出m的取值范围,再设卖完A、B两种商品商场的利润为w,根据“总利润=甲商品单个利润×数量+乙商品单个利润×数量”即可得出w关于m的一次函数关系上,根据一次函数的性质结合m的取值范围即可解决最值问题.

【解答】解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,

依题意得:,解得:,

答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.

(2)设该商场购进甲种商品m件,则购进乙种商品件,

由已知得:m≥4,

解得:m≥80.

设卖完A、B两种商品商场的利润为w,

则w=(40﹣30)m+(90﹣70)=﹣10m+2000,

∴当m=80时,w取最大值,最大利润为1200元.

故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.

22.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.

(1)求证:CF是⊙O的切线;

(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)

【考点】切线的判定;平行四边形的性质;扇形面积的计算.

【分析】(1)欲证明CF是⊙O的切线,只要证明∠CDO=90°,只要证明△COD≌△COA即可.

(2)根据条件首先证明△OBD是等边三角形,∠FDB=∠EDC=∠ECD=30°,推出DE=EC=BO=BD=OA由此根据S阴=2•S△AOC﹣S扇形OAD即可解决问题.

【解答】(1)证明:如图连接OD.

∵四边形OBEC是平行四边形,

∴OC∥BE,

∴∠AOC=∠OBE,∠COD=∠ODB,

∵OB=OD,

∴∠OBD=∠ODB,

∴∠DOC=∠AOC,

在△COD和△COA中,

∴△COD≌△COA,

∴∠CAO=∠CDO=90°,

∴CF⊥OD,

∴CF是⊙O的切线.

(2)解:∵∠F=30°,∠ODF=90°,

∴∠DOF=∠AOC=∠COD=60°,

∵OD=OB,

∴△OBD是等边三角形,

∴∠DBO=60°,

∵∠DBO=∠F+∠FDB,

∴∠FDB=∠EDC=30°,

∵EC∥OB,

∴∠E=180°﹣∠OBD=120°,

∴∠ECD=180°﹣∠E﹣∠EDC=30°,

∴EC=ED=BO=DB,

∵EB=4,

∴OB=OD═OA=2,

在RT△AOC中,∵∠OAC=90°,OA=2,∠AOC=60°,

∴AC=OA•tan60°=2,

∴S阴=2•S△AOC﹣S扇形OAD=2××2×2﹣=2﹣.

23.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A

(1)求抛物线的解析式;

(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;

(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

【考点】二次函数综合题.

【分析】(1)由对称轴的对称性得出点A的坐标,由待定系数法求出抛物线的解析式;

(2)作辅助线把四边形COBP分成梯形和直角三角形,表示出面积S,化简后是一个关于S的二次函数,求最值即可;

(3)画出符合条件的Q点,只有一种,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△OCQ和直角△CQM利用勾股定理列方程;两方程式组成方程组求解并取舍.

【解答】解:(1)由对称性得:A(﹣1,0),

设抛物线的解析式为:y=a(x+1)(x﹣2),

把C(0,4)代入:4=﹣2a,

a=﹣2,

∴y=﹣2(x+1)(x﹣2),

∴抛物线的解析式为:y=﹣2x2+2x+4;

(2)如图1,设点P(m,﹣2m2+2m+4),过P作PD⊥x轴,垂足为D,

∴S=S梯形+S△PDB=m(﹣2m2+2m+4+4)+(﹣2m2+2m+4)(2﹣m),

S=﹣2m2+4m+4=﹣2(m﹣1)2+6,

∵﹣2<0,

∴S有最大值,则S大=6;

(3)如图2,存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形,

理由是:

设直线BC的解析式为:y=kx+b,

把B(2,0)、C(0,4)代入得:,

解得:,

∴直线BC的解析式为:y=﹣2x+4,

设M(a,﹣2a+4),

过A作AE⊥BC,垂足为E,

则AE的解析式为:y=x+,

则直线BC与直线AE的交点E(1.4,1.2),

设Q(﹣x,0)(x>0),

∵AE∥QM,

∴△ABE∽△QBM,

∴①,

由勾股定理得:x2+42=2×[a2+(﹣2a+4﹣4)2]②,

由①②得:a1=4(舍),a2=,

当a=时,x=,

∴Q(﹣,0).

2016年7月12日

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56841 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握