数学
卷Ⅰ
一、选择题(本题有10小题,第1-5小题,每小题3分,第6-10小题,每小题4分,共35分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1. 如图,比数轴上点A表示的数大3的数是( )
A B. 0 C. 1 D. 2
2. 截面为扇环的几何体与长方体组成的摆件如图所示,它的主视图是( )
A. B.
C. D.
3. 苏步青来自“数学家之乡”,为纪念其卓越贡献,国际上将一颗距地球约218000000公里的行星命名为“苏步青星”.数据218000000用科学记数法表示为( )
A. B. C. D.
4. 某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为( )
A. B. C. D.
5. 某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.为了解学生想法,校方进行问卷调查(每人选一个地点),并绘制成如图所示统计图.已知选择雁荡山的有270人,那么选择楠溪江的有( )
A. 90人 B. 180人 C. 270人 D. 360人
6. 化简的结果是( )
A. B. C. D.
7. 一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g.设蛋白质、脂肪的含量分别为,,可列出方程为( )
A. B. C. D.
8. 图1是第七届国际数学教育大会(ICME)的会徽,图2由其主体图案中相邻两个直角三角形组合而成.作菱形,使点D,E,F分别在边,,上,过点E作于点H.当,,时,的长为( )
A. B. C. D.
9. 如图,四边形内接于,,.若,,则的度数与的长分别为( )
A 10°,1 B. 10°, C. 15°,1 D. 15°,
10. 【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.
【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟.小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.
【问题】路线①③⑥⑦⑧各路段路程之和为( )
A. 4200米 B. 4800米 C. 5200米 D. 5400米
卷Ⅱ
二、填空题(本题有6小题,第11—15小题,每小题4分,第16小题5分,共25分)
11. 分解因式:____________ .
12. 某校学生“亚运知识”竞赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在分及以上的学生有___________人.
13. 不等式组的解是___________.
14. 若扇形的圆心角为,半径为,则它的弧长为___________.
15. 在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强P()与汽缸内气体的体积V()成反比例,P关于V的函数图象如图所示.若压强由加压到,则气体体积压缩了___________.
16. 图1是方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形作为题字区域(点,,,在圆上,点,在上),形成一幅装饰画,则圆的半径为___________.若点,,在同一直线上,,,则题字区域的面积为___________.
三、解答题(本题有8小题,共90分.解答需写出必要的文字说明、演算步骤或证明过程)
17. 计算:
(1).
(2).
18. 如图,在方格纸中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).
(1)在图中画一个等腰三角形,使底边长为,点E在上,点F在上,再画出该三角形绕矩形的中心旋转180°后的图形.
(2)在图中画一个,使,点Q在上,点R在上,再画出该三角形向右平移1个单位后的图形.
19. 某公司有A,B,C三种型号电动汽车出租,每辆车每天费用分别为300元、380元、500元.阳阳打算从该公司租一辆汽车外出旅游一天,往返行程为210,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.
(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.
(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.
20. 如图,在直角坐标系中,点在直线上,过点A的直线交y轴于点.
(1)求m的值和直线的函数表达式.
(2)若点在线段上,点在直线上,求的最大值.
21. 如图,已知矩形,点E在延长线上,点F在延长线上,过点下作交的延长线于点H,连结交于点G,.
(1)求证:.
(2)当,时,求的长.
22. 一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为2.44m,现以O为原点建立如图所示直角坐标系.
(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).
(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?
23 根据背景素材,探索解决问题.
注:测量时,以答题纸上的图上距离为准,并精确到1.
24. 如图1,为半圆的直径,为延长线上一点,切半圆于点,,交延长线于点,交半圆于点,已知,.如图,连接,为线段上一点,过点作的平行线分别交,于点,,过点作于点.设,.
(1)求的长和关于的函数表达式.
(2)当,且长度分别等于,,的三条线段组成的三角形与相似时,求的值.
(3)延长交半圆于点,当时,求的长.