2012年广东省广州市中考数学试卷解析
一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的)
1.(2012•广州)实数3的倒数是( )
A.﹣ B. C.﹣3 D.3
2.(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )
A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2 D.y=(x+1)2
3.(2012•广州)一个几何体的三视图如图所示,则这个几何体是( )
A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱
4.( 2012•广州)下面的计算正确的是( )
A.﹣=1 B.a+2=3 C.﹣(a﹣b)=﹣a+b D.2(a+b)=+b
5.(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是( )
A.26 B.25 C.21 D.20
6.(2012•广州)已知|a﹣1|+=0,则a+b=( )
A.﹣8 B.﹣6 C.6 D.8
7.(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )
A. B. C. D.
8.(2012•广州)已知a>b,若c是任意实数,则下列不等式中总是成立的是( )
A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc
9.(2012•广州)在平面中,下列命题为真命题的是( )
A.四边相等的四边形是正方形 B.对角线相等的四边形是菱形 C.四个角相等的四边形是矩形 D.对角线互相垂直的四边形是平行四边形
10.( 2012•广州)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是( )
A.x<﹣1或x>1 B.x<﹣1或0<x<1 C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>1
二、填空题(本大题共6小题,每小题3分,满分18分)
11.(2012•广州)已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD= 15 度.
12.(2012•广州)不等式x﹣1≤10的解集是 x≤11 .
13.(2012•广州)分解因式:a3﹣= a(a+2)(a﹣2) .
14.(2012•广州)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为 2 .
15.(2012•广州)已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为 3 .
16.(2012•广州)如图,在标有刻度的直线l上,从点A开始,
以AB=1为直径画半圆,记为第1个半圆;
以BC=2为直径画半圆,记为第2个半圆;
以CD=4为直径画半圆,记为第3个半圆;
以DE=8为直径画半圆,记为第4个半圆,
…按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的 4 倍,第n个半圆的面积为 22n﹣5π (结果保留π)
三、解答题(本大题共9小题,满分102分.解答应写出文字说明,证明过程或演算步骤)
17.(2012•广州)解方程组.
18.(2012•广州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.
19.(2012•广州)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:
(1)这五年的全年空气质量优良天数的中位数是 345 ,极差是 24 .
(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是 2008 年(填写年份).
(3)求这五年的全年空气质量优良天数的平均数.
20.(2012•广州)已知(a≠b),求的值.
21.(2012•广州)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况.
(2)求点A落在第三象限的概率.
22.(2012•广州)如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.21世纪教育网
23.(2012•广州)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.
(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.
(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?
24.(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
25.(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.