当前位置:首页 > 中考 > 数学

2014年中考数学试题分类汇编21 全等三角形

试卷简介

这份试卷包含了多个关于全等三角形和相关几何性质的题目,涉及选择题、填空题和解答题等多种题型。题目涵盖的知识点广泛,包括命题与定理、全等三角形的判定和性质、垂直和平行线的性质、三角形内角和、三角函数的运用、图形的旋转、图形的翻折等。试卷不仅考察了学生的基础知识,还考察了学生的逻辑推理能力和解决问题的能力。

所涉及的知识点

这份试卷主要涵盖了全等三角形的判定及其性质,同时也涉及到了命题与定理、平行四边形和矩形的性质、三角形内角和、垂直和平行线的性质、三角函数、图形的翻折和旋转等内容。这些知识点共同构成了初中数学几何部分的核心内容。

全等三角形(包括命题)

一、选择题

1.(2014年四川资阳,第6题3分)下列命题中,真命题是(  )

  A. 一组对边平行,另一组对边相等的四边形是平行四边形

  B. 对角线互相垂直的平行四边形是矩形

  C. 对角线垂直的梯形是等腰梯形

  D. 对角线相等的菱形是正方形

考点: 命题与定理.

分析: 利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.

解答: 解:A、有可能是等腰梯形,故错误;

B、对角线互相垂直的平行四边形是菱形,故错误;

C、对角线相等的梯形是等腰梯形,故错误;

D、正确,

故选D.

点评: 本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.

2.(2014•毕节地区,第5题3分)下列叙述正确的是( )

3.(2014·台湾,第9题3分)如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?(  )

A.2 B.3 C.4 D.5

分析:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.由AB=BC,△ABC≌△DEF,就可以得出△AKC≌△CHA≌△DPF,就可以得出结论.

解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.

∴∠DPF=∠AKC=∠CHA=90°.

∵AB=BC,

∴∠BAC=∠BCA.

在△AKC和△CHA中。

∴△AKC≌△CHA(ASA),

∴KC=HA.

∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),

∴AH=4.

∴KC=4.

∵△ABC≌△DEF,

∴∠BAC=∠EDF,AC=DF.

在△AKC和△DPF中,

∴△AKC≌△DPF(AAS),

∴KC=PF=4.

故选C.

点评:本题考查了坐标与图象的性质的运用,垂直的性质的运用,全等三角形的判定及性质的运用,等腰三角形的性质的运用,解答时证明三角形全等是关键.

4. (2014•益阳,第7题,4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是(  )

(第1题图)

5. (2014年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是(  )

(第2题图)

A.(,3)、(﹣,4) B. (,3)、(﹣,4)

C.(,)、(﹣,4) D.(,)、(﹣,4)

考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。

分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.

解答:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,

∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,

在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),

∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,

∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,

∴OE=,即点B(,3),∴AF=OE=,

∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.

点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

6.(2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=(  )

x§k§b 1

(第3题图)

7.(2014年山东泰安,第16题3分)将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为(  )

 A.10° B. 20° C. 7.5° D. 15°

分析: 根据直角三角形两锐角互余求出∠DCE=60°,旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C﹣∠CD1E1计算即可得解.

解:∵∠CED=90°,∠D=30°,∴∠DCE=60°,

∵△DCE绕点C顺时针旋转15°,∴∠BCE1=15°,

∴∠BCD1=60°﹣15°=45°,∴∠BCD1=∠A,

在△ABC和△D1CB中,,∴△ABC≌△D1CB(SAS),

∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C﹣∠CD1E1=45°﹣30°=15°.故选D.

点评:本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB全等是解题的关键.

二.填空题

1.(2014•新疆,第14题5分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为   .

2.(2014•毕节地区,第20题5分)如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为 .

3.(2014•武汉,第16题3分)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为 .

4. (2014•泰州,第16题,3分)如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于 1或2 cm.

(第1题图)

三.解答题

1.(2014年四川资阳,第23题11分)如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.

(1)求证:△ABP≌△CBE;

(2)连结AD、BD,BD与AP相交于点F.如图2.

①当=2时,求证:AP⊥BD;

②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.

考点: 相似形综合题.

分析: (1)求出∠ABP=∠CBE,根据SAS推出即可;

(2)①延长AP交CE于点H,求出AP⊥CE,证出△CPD∽△BPE,推出DP=PE,求出平行四边形BDCE,推出CE∥BD即可;

②分别用S表示出△PAD和△PCE的面积,代入求出即可.

解答: (1)证明:∵BC⊥直线l1,

∴∠ABP=∠CBE,

在△ABP和△CBE中

∴△ABP≌△CBE(SAS);

(2)①证明:延长AP交CE于点H,

∵△ABP≌△CBE,

∴∠PAB=∠ECB,

∴∠PAB+∠AEE=∠ECB+∠AEH=90°,

∴AP⊥CE,

∵=2,即P为BC的中点,直线l1∥直线l2,

∴△CPD∽△BPE,

∴==,

∴DP=PE,

∴四边形BDCE是平行四边形,

∴CE∥BD,

∵AP⊥CE,

∴AP⊥BD;

②解:∵=N

∴BC=n•BP,

∴CP=(n﹣1)•BP,

∵CD∥BE,

∴△CPD∽△BPE,

∴==n﹣1,

即S2=(n﹣1)S,

∵S△PAB=S△BCE=n•S,

∴△PAE=(n+1)•S,

∵==n﹣1,

∴S1=(n+1)(n﹣1)•S,新*课标*第*一*网

∴==n+1.

点评: 本题考查了平行四边形的性质和判定,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查了学生的推理能力,题目比较好,有一定的难度.

2.(2014•新疆,第20题10分)如图,已知△ABC,按如下步骤作图:

①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;

②作直线PQ,分别交AB,AC于点E,D,连接CE;

③过C作CF∥AB交PQ于点F,连接AF.

(1)求证:△AED≌△CFD;

(2)求证:四边形AECF是菱形.

3 .(2014年云南省,第16题5分)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.

考点: 全等三角形的判定与性质.

专题: 证明题.

分析: 根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.

解答: 证明:在△ADB和△BAC中,

∴△ADB≌△BAC(SAS),

∴AC=BD.

点评: 本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.

4.(2014•温州,第18题8分)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.

(1)图甲中的格点正方形ABCD;

(2)图乙中的格点平行四边形ABCD.

注:图甲,图乙在答题卡上,分割线画成实线.

5.(2014•舟山,第20题8分)已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.[来源:Z#xx#k.Com]

(1)求证:△DOE≌△BOF.

(2)当∠DOE等于多少度时,四边形BFED为菱形?请说明理由.

6.(2014•武汉,第19题6分)如图,AC和BD相交于点O,OA=OC,OB=OD.

求证:DC∥AB.

7.(2014•邵阳,第21题8分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.

(1)从图中任找两组全等三角形;

(2)从(1)中任选一组进行证明.

8.(2014·台湾,第29题分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.

分析:根据∠BCE=∠ACD=90°,可得∠3=∠5,又根据∠BAE=∠1+∠2=90°,∠2+∠D=90°,可得∠1=∠D,继而根据AAS可判定△ABC≌△DEC.

解:∵∠BCE=∠ACD=90°,

∴∠3+∠4=∠4+∠5,

∴∠3=∠5,

在△ACD中,∠ACD=90°,

∴∠2+∠D=90°,

∵∠BAE=∠1+∠2=90°,

∴∠1=∠D,

在△ABC和△DEC中,

∴△ABC≌△DEC(AAS).

点评:本题考查了全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.

注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

9.(2014·云南昆明,第16题5分)已知:如图,点A、B、C、D在同一条直线上,AB=CD,AE∥CF,且AE=CF.

求证:∠E=∠F

10. (2014•湘潭,第20题)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.

(1)求证:△EDF≌△CBF;

(2)求∠EBC.

(第20题图)

11. (2014•株洲,第22题,8分)如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).

(1)求证:△ACE≌△AFE;

(2)求tan∠CAE的值.

12. (2014年江苏南京,第27题)【问题提出】

学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

(第3题图)

【深入探究】

第一种情况:当∠B是直角时,△ABC≌△DEF.

(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 HL ,可以知道Rt△ABC≌Rt△DEF.

第二种情况:当∠B是钝角时,△ABC≌△DEF.

(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.

第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.

(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)

(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ∠B≥∠A ,则△ABC≌△DEF.

考点:全等三角形的判定与性质

分析:(1)根据直角三角形全等的方法“HL”证明;

(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;

(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;

(4)根据三种情况结论,∠B不小于∠A即可.

解答:(1)解:HL;

(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,

∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,

即∠CBG=∠FEH,

在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,

在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,

在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);

(3)解:如图,△DEF和△ABC不全等;

(4)解:若∠B≥∠A,则△ABC≌△DEF.

故答案为:(1)HL;(4)∠B≥∠A.

点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.

13. (2014•扬州,第28题,12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(第4题图)

(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.

①求证:△OCP∽△PDA;

②若△OCP与△PDA的面积比为1:4,求边AB的长;

(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;

(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.

14.(2014•德州,第23题10分)问题背景:

如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF ;

探索延伸:

如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

15.(2014年山东泰安,第27题)如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.

(1)求证:∠FMC=∠FCM;

(2)AD与MC垂直吗?并说明理由.

分析:(1)根据等腰直角三角形的性质得出DF⊥AE,DF=AF=EF,进而利用全等三角形的判定得出△DFC≌△AFM(AAS),即可得出答案;

(2)由(1)知,∠MFC=90°,FD=EF,FM=FC,即可得出∠FDE=∠FMC=45°,即可理由平行线的判定得出答案.

(1)证明:∵△ADE是等腰直角三角形,F是AE中点,

∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,

∴∠DCF=∠AMF,

在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),

∴CF=MF,∴∠FMC=∠FCM;

(2)AD⊥MC,

理由:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,

∴DE∥CM,∴AD⊥MC.

点评:此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,得出∠DCF=∠AMF是解题关键.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56392 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握