当前位置:首页 > 中考 > 数学

2014年中考数学试题分类汇编22 等腰三角形

试卷简介

这份试卷涵盖了多个关于等腰三角形及其相关性质的选择题、填空题和解答题。题目内容涉及等腰三角形的周长计算、角度计算、旋转性质以及与其他几何图形(如直角三角形、等边三角形)的关系。试题难度从基础到中等偏上,适合小学高年级学生复习和巩固等腰三角形的相关知识点。

所涉及的知识点

等腰三角形的性质及应用,包括周长计算、角度计算、旋转性质以及与其他几何图形的关系。

等腰三角形

一、选择题

1. ( 2014•广东,第9题3分)一个等腰三角形的两边长分别是3和7,则它的周长为(  )

2. ( 2014•广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是(  )

 新*课*标*第*一*网

3.(2014·浙江金华,第8题4分)如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B的度数是【 】

A.70°   B.65°    C.60°    D.55°

【答案】B.

【解析】

4. (2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=(  )

(第1题图)

新*课*标*第*一*网

二.填空题

1. ( 2014•广东,第16题4分)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于 ﹣1 .

2. ( 2014•珠海,第10题4分)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为 8 .

3. ( 2014•广西贺州,第17题3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是 50° .

4.(2014年天津市,第17 题3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为 45 (度).

考点: 等腰三角形的性质.

分析: 设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.

解答: 解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.

∵AE=AC,

∴∠ACE=∠AEC=x+y,

∵BD=BC,

∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.

在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,

∴x+(90°﹣y)+(x+y)=180°,

解得x=45°,

∴∠DCE=45°.

故答案为45.

点评: 本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.

5.(2014•新疆,第12题5分)如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是 .

6.(2014年云南省,第13题3分)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD= 18° .

考点: 等腰三角形的性质.

分析: 根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.

解答: 解:∵AB=AC,∠A=36°,

∴∠ABC=∠ACB=72°.

∵BD⊥AC于点D,

∴∠CBD=90°﹣72°=18°.

故答案为:18°.

点评: 本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.

7. (2014•益阳,第13题,4分)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是 60° .

(第1题图)

8. (2014•泰州,第15题,3分)如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为 y=(x>0) .

(第2题图)

9. (2014•扬州,第10题,3分)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为 35 cm.

10.(2014•呼和浩特,第13题3分)等腰三角形一腰上的高与另一腰的夹角为36,则该等腰三角形的底角的度数为 63°或27° .

三.解答题

1. (2014•湘潭,第25题) △ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,

(1)求证:△BDF∽△CEF;

(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;

(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.

(第1题图)

2. (2014•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.

(1)求a,k的值;

(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;

(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.

(第2题图)

3. (2014•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.

(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);

(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);

(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).

(第3题图)

4. (2014•泰州,第23题,10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.

(1)求证:BE=AF;

(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.

(第4题图)

5. (2014•泰州,第26题,14分)平面直角坐标系xOy中,点A、B分别在函数y1=(x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为

a、B.

(第5题图)

(1)若AB∥x轴,求△OAB的面积;

(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;

(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD边与函数y1=(x>0)的图象都有交点,请说明理由.

6. (2014•扬州,第28题,12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(第6题图)

(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.

①求证:△OCP∽△PDA;

②若△OCP与△PDA的面积比为1:4,求边AB的长;

(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;

(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.

7.(2014•温州,第20题10分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.

(1)求∠F的度数;

(2)若CD=2,求DF的长.

8.(2014年广东汕尾,第19题7分)如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.

(1)求∠ADE;(直接写出结果)

(2)当AB=3,AC=5时,求△ABE的周长.

分析:(1)根据题意可知MN是线段AC的垂直平分线,由此可得出结论;

(2)先根据勾股定理求出BC的长,再根据线段垂直平分线的性质即可得出结论.

解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;

(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,

∵MN是线段AC的垂直平分线,∴AE=CE,

∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.

点评:本题考查的是作图﹣基本作图,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.

9.(2014•襄阳,第21题6分)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.

(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)

(2)请选择(1)中的一种情形,写出证明过程.

10.(2014•滨州,第24题10分)如图,已知正方形ABCD,把边DC绕D点顺时针旋转30°到DC′处,连接AC′,BC′,CC′,写出图中所有的等腰三角形,并写出推理过程.

11.(2014•菏泽,第16题6分)(1)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56393 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握