当前位置:首页 > 中考 > 数学

2014年中考数学试题分类汇编31 圆的有关性质

试卷简介

这份试卷涵盖了初中数学中与圆相关的多个知识点,包括但不限于圆的性质、圆周角定理、垂径定理、切线性质、弦长计算、三角形与圆的关系等。试题类型丰富,包括选择题、填空题和解答题,旨在全面评估学生对圆相关概念的理解和应用能力。

所涉及的知识点

圆的性质及其应用,包括圆周角定理、垂径定理、切线性质等。

圆的有关性质

一、选择题

1. ( 2014•珠海,第5题3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于(  )

2. ( 2014•广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是(  )

3.(2014•温州,第8题4分)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是(  )

4.(2014•毕节地区,第5题3分)下列叙述正确的是( )

5.(2014•毕节地区,第6题3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是( )

6.(2014•毕节地区,第15题3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为( )

7.(2014•武汉,第10题3分)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( )

8.(2014·台湾,第10题3分)如图,有一圆通过△ABC的三个顶点,且的中垂线与相交于D点.若∠B=74°,∠C=46°,则的度数为何?(  )

A.23 B.28 C.30 D.37

分析:由有一圆通过△ABC的三个顶点,且的中垂线与相交于D点.若∠B=74°,∠C=46°,可求得与的度数,继而求得答案.

解:∵有一圆通过△ABC的三个顶点,且的中垂线与相交于D点,

∴=2×∠C=2×46°═92°,=2×∠B=2×74°=148°=+=+=++,

∴=(148﹣92)=28°.

故选B.

点评:此题考查了圆周角定理以及弧与圆心角的关系.此题难度不大,注意掌握数形结合思想的应用.

9.(2014·台湾,第21题3分)如图,G为△ABC的重心.若圆G分别与AC、BC相切,且与AB相交于两点,则关于△ABC三边长的大小关系,下列何者正确?(  )

A.BC<AC B.BC>AC C.AB<AC D.AB>AC

分析:G为△ABC的重心,则△ABG面积=△BCG面积=△ACG面积,根据三角形的面积公式即可判断.

解:∵G为△ABC的重心,

∴△ABG面积=△BCG面积=△ACG面积,

又∵GHa=GHb>GHc,

∴BC=AC<AB.

故选D.

点评:本题考查了三角形的重心的性质以及三角形的面积公式,理解重心的性质是关键.

10.(2014•浙江湖州,第4题3分)如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是(  )

  A.35° B. 45° C. 55° D. 65°

分析:由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠C=90°,又由∠A=35°,即可求得∠B的度数.

解:∵AB是△ABC外接圆的直径,∴∠C=90°,

∵∠A=35°,∴∠B=90°﹣∠A=55°.故选C.

点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.

11.(2014•孝感,第10题3分)如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:

①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.

其中正确结论的序号是(  )

12.(2014•呼和浩特,第6题3分)已知⊙O的面积为2π,则其内接正三角形的面积为(  )

二.填空题

1.(2014•舟山,第16题4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是 ①③⑤ .

2. ( 2014•福建泉州,第17题4分)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:

(1)AB的长为 1 米;

(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为  米.

3. ( 2014•广东,第14题4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为 3 .

4.(2014•四川自贡,第14题4分)一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为 3 cm.

5. (2014•株洲,第11题,3分)如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是 28° .

(第1题图)

6. (2014年江苏南京,第13题,2分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为  cm.

(第2题图)

考点:垂径定理、圆周角定理.

分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.

解答:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,

∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.

7. (2014•泰州,第15题,3分)如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为 y=(x>0) .

(第3题图)

8.(2014•菏泽,第10题3分)如图,在△ABC中∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为 50° .

9.(2014年山东泰安,第23题4分)如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为  .

分析:连结BC,根据圆周角定理由AB是半圆的直径得∠ACB=90°,在Rt△ABC中,根据勾股定理计算出BC=6,再根据垂径定理由OD⊥AC得到AE=CE=AC=4,然后在Rt△BCE中,根据勾股定理计算出BE=2,则可根据正弦的定义求解.

解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,

在Rt△ABC中,AC=8,AB=10,∴BC==6,

∵OD⊥AC,∴AE=CE=AC=4,

在Rt△BCE中,BE==2,

∴sinα===.故答案为.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和圆周角定理.

三.解答题

1. ( 2014•福建泉州,第26题14分)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).

(1)求该反比例函数的关系式;

(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;

①求△A′BC的周长和sin∠BA′C的值;

②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.

2.( 2014•安徽省,第19题10分)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.

考点: 垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.

专题: 计算题.

分析: 由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF中,根据勾股定理可计算出C=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.

解答: 解:∵OE⊥AB,

∴∠OEF=90°,

∵OC为小圆的直径,

∴∠OFC=90°,

而∠EOF=∠FOC,

∴Rt△OEF∽Rt△OFC,

∴OE:OF=OF:OC,即4:6=6:OC,

∴⊙O的半径OC=9;

在Rt△OCF中,OF=6,OC=9,

∴CF==3,

∵OF⊥CD,

∴CF=DF,

∴CD=2CF=6.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.

3.(2014年天津市,第21题10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.

(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;

(Ⅱ)如图②,若∠CAB=60°,求BD的长.

考点: 圆周角定理;等边三角形的判定与性质;勾股定理.

分析: (Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;

(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.

解答: 解:(Ⅰ)如图①,∵BC是⊙O的直径,

∴∠CAB=∠BDC=90°.

∵在直角△CAB中,BC=10,AB=6,

∴由勾股定理得到:AC===8.

∵AD平分∠CAB,

∴=,

∴CD=BD.

在直角△BDC中,BC=10,CD2+BD2=BC2,

∴易求BD=CD=5;

(Ⅱ)如图②,连接OB,OD.

∵AD平分∠CAB,且∠CAB=60°,

∴∠DAB=∠CAB=30°,

∴∠DOB=2∠DAB=60°.

又∵OB=OD,

∴△OBD是等边三角形,

∴BD=OB=OD.

∵⊙O的直径为10,则OB=5,

∴BD=5.

点评: 本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.

4.(2014•新疆,第21题10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.

(1)求证:CD是⊙O的切线;

(2)若CD=2,求⊙O的半径.

5.(2014年云南省,第23题9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.

(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);

(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;

(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.

考点: 圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.

专题: 综合题;存在型;分类讨论.

分析: (1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.

(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.

(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.

解答: 解:(1)过点P作PH∥OA,交OC于点H,如图1所示.

∵PH∥OA,

∴△CHP∽△COA.

∴==.

∵点P是AC中点,

∴CP=CA.

∴HP=OA,CH=CO.

∵A(3,0)、C(0,4),

∴OA=3,OC=4.

∴HP=,CH=2.

∴OH=2.

∵PH∥OA,∠COA=90°,

∴∠CHP=∠COA=90°.

∴点P的坐标为(,2).

设直线DP的解析式为y=kx+b,

∵D(0,﹣5),P(,2)在直线DP上,

∴直线DP的解析式为y=x﹣5.

(2)①若△DOM∽△ABC,图2(1)所示,

∵△DOM∽△ABC,

∴=.

∵点B坐标为(3,4),点D的坐标为(0.﹣5),

∴BC=3,AB=4,OD=5.

∴=.

∴OM=.

∵点M在x轴的正半轴上,

∴点M的坐标为(,0)

②若△DOM∽△CBA,如图2(2)所示,

∵△DOM∽△CBA,

∴=.

∵BC=3,AB=4,OD=5,

∴=.

∴OM=.

∵点M在x轴的正半轴上,

∴点M的坐标为(,0).

综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).

(3)∵OA=3,OC=4,∠AOC=90°,

∴AC=5.

∴PE=PF=AC=.

∵DE、DF都与⊙P相切,

∴DE=DF,∠DEP=∠DFP=90°.

∴S△PED=S△PFD.

∴S四边形DEPF=2S△PED

=2×PE•DE

=PE•DE

=DE.

∵∠DEP=90°,

∴DE2=DP2﹣PE2.

=DP2﹣.

根据“点到直线之间,垂线段最短”可得:

当DP⊥AC时,DP最短,

此时DE取到最小值,四边形DEPF的面积最小.

∵DP⊥AC,

∴∠DPC=90°.

∴∠AOC=∠DPC.

∵∠OCA=∠PCD,∠AOC=∠DPC,

∴△AOC∽△DPC.

∴=.

∵AO=3,AC=5,DC=4﹣(﹣5)=9,

∴=.

∴DP=.

∴DE2=DP2﹣

=()2﹣

=.

∴DE=,

∴S四边形DEPF=DE

=.

∴四边形DEPF面积的最小值为.

点评: 本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.

6.(2014年广东汕尾,第20题11分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.

(1)求证:点E是边BC的中点;

(2)求证:BC2=BD•BA;

(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.

分析: (1)利用切线的性质及圆周角定理证明;(2)利用相似三角形证明;

(3)利用正方形的性质证明.

证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°;

∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,

∴∠EDC=∠ECD,∴ED=EC;∵AC为直径,∴∠ADC=90°,

∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.

∴EB=EC,即点E为边BC的中点;

(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B

∴△ABC∽△CDB,∴,∴BC2=BD•BA;

(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,

∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°

∴Rt△ABC为等腰直角三角形.

点评:本题是几何证明题,综合考查了切线性质、圆周角定理、相似三角形、正方形、等腰直角三角形等知识点.试题着重对基础知识的考查,难度不大.

7.(2014•毕节地区,第26题14分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.

(1)求证:∠A=∠BCD;

(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.

8.(2014•武汉2014•武汉,第22题8分)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.

(1)如图(1),若点P是的中点,求PA的长;

(2)如图(2),若点P是的中点,求PA的长.

9.(2014•襄阳,第25题10分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.

(1)求证:△ADP∽△BDA;

(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;

(3)若AD=2,PD=1,求线段BC的长.

10.(2014•孝感,第20题8分)如图,在Rt△ABC中,∠ACB=90°.

(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);

(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.

11.(2014•孝感,第24题10分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.

(1)求证:AC平分∠DAB;

(2)求证:△PCF是等腰三角形;

(3)若tan∠ABC=,BE=7,求线段PC的长.

12.(2014•浙江湖州,第19题分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).

(1)求证:AC=BD;

(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.

考点: 垂径定理;勾股定理.

分析: (1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;

(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.

解答: (1)证明:作OE⊥AB,

∵AE=BE,CE=DE,

∴BE﹣DE=AE﹣CE,即AC=BD;

(2)∵由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,

∴CE===2,AE===8,

∴AC=AE﹣CE=8﹣2.

点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

13. (2014•湘潭,第25题) △ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,

(1)求证:△BDF∽△CEF;

(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;

(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.

(第1题图)

14. (2014年江苏南京,第26题)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.

(1)求⊙O的半径;

(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.

(第2题图)

考点:圆的性质、两圆的位置关系、解直角三角形

分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.

(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.

解答:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,

则AD=AF,BD=BE,CE=CF.

∵⊙O为△ABC的内切圆,

∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.

∵∠C=90°,

∴四边形CEOF是矩形,

∵OE=OF,

∴四边形CEOF是正方形.

设⊙O的半径为rcm,则FC=EC=OE=rcm,

在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,

∴AB==5cm.

∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,

∴4﹣r+3﹣r=5,

解得 r=1,即⊙O的半径为1cm.

(2)如图2,过点P作PG⊥BC,垂直为G.

∵∠PGB=∠C=90°,∴PG∥AC.

∴△PBG∽△ABC,∴.∵BP=t,

∴PG=,BG=.

若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.

①当⊙P与⊙O外切时,

如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.

∵∠PHE=∠HEG=∠PGE=90°,

∴四边形PHEG是矩形,

∴HE=PG,PH=CE,

∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.

在Rt△OPH中,

由勾股定理,,

解得 t=.

②当⊙P与⊙O内切时,

如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.

∵∠MGE=∠OEG=∠OMG=90°,

∴四边形OEGM是矩形,

∴MG=OE,OM=EG,

∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,

在Rt△OPM中,

由勾股定理,,解得 t=2.

综上所述,⊙P与⊙O相切时,t=s或t=2s.

点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.

15.(2014•呼和浩特,第24题8分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.

(1)求证:∠ACM=∠ABC;

(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56402 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握