当前位置:首页 > 中考 > 数学

2014年中考数学试题分类汇编解析 直角三角形与勾股定理

试卷简介

这份试卷涵盖了多个关于直角三角形和勾股定理的题目。通过选择题、填空题和解答题的形式,测试学生对勾股定理及其相关概念的理解和应用能力。题目涉及的内容包括线段垂直平分线的性质、矩形的性质、平面展开最短路径问题、圆与圆相切的性质、三角形中位线定理、垂径定理等。

所涉及的知识点

直角三角形中的勾股定理及相关性质的应用。

直角三角形与勾股定理

一、选择题

1. (2014•山东枣庄,第3题3分)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为( )

2. 1.(2014•湖南张家界,第7题,3分)如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是(  )

 3. (2014•十堰9.(3分))如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为(  )

4. (2014•娄底8.(3分))下列命题中,错误的是(  )

5. (2014•山东淄博,第10题4分)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为(  )

  A. 1 B. C. D. 2

考点: 勾股定理;线段垂直平分线的性质;矩形的性质.菁优网

分析: 本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.

解答: 解:如图,连接EC.

∵FC垂直平分BE,

∴BC=EC(线段垂直平分线的性质)

又∵点E是AD的中点,AE=1,AD=BC,

故EC=2

利用勾股定理可得AB=CD==.

故选:C.

点评: 本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.

二、填空题

1. (2014•山东威海,第17题3分)如图,有一直角三角形纸片ABC,边BC=6,AB=10,∠ACB=90°,将该直角三角形纸片沿DE折叠,使点A与点C重合,则四边形DBCE的周长为 18 .

2. (2014•山东枣庄,第18题4分)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为 (3+3) cm.

3. (2014•山东潍坊,第18题3分)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是__________尺.

考点:平面展开-最短路径问题;勾股定理的应用.

分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.

解答:解:如图,一条直角边(即木棍的高)长20尺,

另一条直角边长5×3=15(尺),因此葛藤长=25(尺).

故答案为:25

点评:本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.

4. 半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于  .

考点:圆和圆相切的性质,勾股定理.

分析: 作O2C⊥OA于点C,连接O1O2,设O2C=r,根据⊙O1的半径为2,OO1=7,表示出O1O2=r+2,O1C=7﹣r,利用勾股定理列出有关r的方程求解即可.

解答:如图,作O2C⊥OA于点C,连接O1O2,

设O2C=r,∵∠AOB=45°,∴OC=O2C=r,

∵⊙O1的半径为2,OO1=7,

∴O1O2=r+2,O1C=7﹣r,

∴(7﹣r)2+r2=(r+2)2,解得:r=3或15,

故答案为:3或15.

点评:本题考查了圆与圆的位置关系,解题的关键是正确的作出图形,难度中等.

5. (2014•江西抚州,第14题,3分)如图,两块完全相同的含30°角的直角三角板ABC和重合在一起,将三角板绕其顶点按逆时针方向旋转角α(0°< α≤90°),有以下四个结论:

①当α=30°时,与的交点恰好为的中点;

②当α=60°时,恰好经过点;

③在旋转过程中,存在某一时刻,使得;

④在旋转过程中,始终存在,

其中结论正确的序号是 ① ② ④ .(多填或填错得0分,少填酌情给分)

解析:如图1,∵α=30°,∴∠ACA′=∠A=30°,∠BCA′=∠B=60°,∴DC=DA,DC=DB,∴DA=DB,∴D是AB的中点.正确

如图2,当α=60°时,取A′B′的中点E,连接CE,则∠B′CE=∠B′CB=60°,又CB=CB′,∴E、B重合,∴A′、B′恰好经过点B.正确

如图3,连接AA′,BB′,则⊿CAA′∽⊿CBB′,∴,∴AA′=BB′.错误

如图4,∠A′B′D=∠CBB′-60°,∠B′A′D=180°-(∠CA′A+30°),

∴∠A′B′D+∠B′A′D=90°+∠CBB′-∠CA′A

∵ ∠CBB′=∠CA′A ,

∴∠A′B′D+∠B′A′D=90°,即∠D=90°,

∴AA′⊥BB′.正确

∴①,②,④正确.

6. (2014年湖北咸宁13.(3分))如图,在扇形OAB中,∠AOB=90°,点C是上的一个动点(不与A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.若DE=1,则扇形OAB的面积为  .

考点: 三角形中位线定理;垂径定理;扇形面积的计算.菁优网

分析: 连接AB,由OD垂直于BC,OE垂直于AC,利用垂径定理得到D、E分别为BC、AC的中点,即ED为三角形ABC的中位线,即可求出AB的长.利用勾股定理、OA=OB,且∠AOB=90°,可以求得该扇形的半径.

解答: 解:连接AB,

∵OD⊥BC,OE⊥AC,

∴D、E分别为BC、AC的中点,

∴DE为△ABC的中位线,

∴AB=2DE=2.

又∵在△OAB中,∠AOB=90°,OA=OB,

∴OA=OB=AB=,

∴扇形OAB的面积为:=.

故答案是:.

点评: 此题考查了垂径定理,勾股定理,扇形面积的计算以及三角形的中位线定理,熟练掌握定理是解本题的关键.

7. (2014•年山东东营,第14题3分)如图,有两棵树,一棵高,另一棵高,两树相距,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行 米.

考点: 勾股定理的应用.菁优网

分析: 根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.

解答: 解:如图,设大树高为AB=,

小树高为CD=,

过C点作CE⊥AB于E,则四边形EBDC是矩形,

连接AC,

∴EB=,EC=,AE=AB﹣EB=12﹣6=6(m),

在Rt△AEC中,AC==10(m).

故小鸟至少飞行.

故答案为:10.

点评: 本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.

8.(2014•四川宜宾,第14题,3分)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= 1.5 .

9.(2014•四川凉山州,第16题,4分)已知一个直角三角形的两边的长分别是3和4,则第三边长为 5或 .

10.(2014•四川凉山州,第26题,5分)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为 20 cm.

11.(2014•甘肃白银、临夏,第13题4分)等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是   cm.

三、解答题

1. (2014•上海,第22题10分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.

(1)求sinB的值;

(2)如果CD=,求BE的值.

2. (2014山东济南,第27题,9分)如图1,有一组平行线,正方形的四个顶点分别在上,过点D且垂直于于点E,分别交于点F,G,.

(1)    ,正方形的边长=    ;

(2)如图2,将绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上.

①写出与的函数关系并给出证明;

②若,求菱形的边长.

【解析】(1)在中,AD=DC,又有和互余,和互余,故和相等,,知,

又,所以正方形的边长为.

(2)①过点作垂直于于点M,在中, ,,故,所以互余,与之和为,故=-.

②过E点作ON垂直于分别交于点O,N,

若,,,故, , ,

由勾股定理可知菱形边长为.

3.(( 2014年河南) 22.10分)(1)问题发现

如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE

填空:(1)∠AEB的度数为 60 ;

(2)线段AD、BE之间的数量关系是 AD=BE 。

解:(1)①60;②AD=BE. …………………………………………2分

提示:(1)①可证△CDA≌△CEB,

∴∠CEB=∠CDA=1200,

又∠CED=600,

∴∠AEB=1200-600=600.

②可证△CDA≌△CEB,

∴AD=BE

(2)拓展探究

如图2,△ACB和△DCE均为等边三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE。请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由。

解:(2)∠AEB=900;AE=2CM+BE. …………………………4分

(注:若未给出本判断结果,但后续理由说明完全正确,不扣分)

理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 900,

∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE-∠DCB, 即∠ACD= ∠BCE

∴△ACD≌△BCE. ……………………………………………………6分

∴AD = BE, ∠BEC=∠ADC=1350.

∴∠AEB=∠BEC-∠CED=1350-450=900.……………………………7分

在等腰直角三角形DCE中,CM为斜边DE上的高,

∴CM= DM= ME,∴DE=2CM.

∴AE=DE+AD=2CM+BE……………………………………………………8分

(3)解决问题

如图3,在正方形ABCD中,CD=。若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离。

(3)或………………………………………………………10分

【提示】PD =1,∠BPD=900,

∴BP是以点D为圆心、以1为半径的OD的切线,点P为切点.

第一种情况:如图①,过点A作AP的垂线,交BP于点P/,

可证△APD≌△AP/B,PD=P/B=1,

CD=,∴BD=2,BP=,

∴AM=PP/=(PB-BP/)=

第二种情况如图②,

可得AMPP/=(PB+BP/)=

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:56421 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握