综合性问题
一、选择题
1. (2014•年山东东营,第10题3分)如图,四边形ABCD为菱形,AB=BD,点B、C、D、G四个点在同一个圆⊙O上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结论:
①AE=DF;②FH∥AB;③△DGH∽△BGE;④当CG为⊙O的直径时,DF=AF.[中
其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
考点: 圆的综合题.菁优网
分析: ①由四边形ABCD是菱形,AB=BD,得出△ABD和△BCD是等边三角形,再由B、C、D、G四个点在同一个圆上,得出∠ADE=∠DBF,由△ADE≌△DBF,得出AE=DF,
②利用内错角相等∠FBA=∠HFB,求证FH∥AB,
③利用∠DGH=∠EGB和∠EDB=∠FBA,求证△DGH∽△BGE,
④利用CG为⊙O的直径及B、C、D、G四个点共圆,求出∠ABF=120°﹣90°=30°,在RT△AFB中求出AF=AB
在RT△DFB中求出FD=BD,再求得DF=AF.
解答: 解:①∵四边形ABCD是菱形,
∴AB=BC=DC=AD,
又∵AB=BD,
∴△ABD和△BCD是等边三角形,
∴∠A=∠ABD=∠DBC=∠BCD=∠CDB=∠BDA=60°,
又∵B、C、D、G四个点在同一个圆上,
∴∠DCH=∠DBF,∠GDH=∠BCH,
∴∠ADE=∠ADB﹣∠GDH=60°﹣∠EDB,∠DCH=∠BCD﹣∠BCH=60°﹣∠BCH,
∴∠ADE=∠DCH,
∴∠ADE=∠DBF,
在△ADE和△DBF中,
∴△ADE≌△DBF(ASA)
∴AE=DF
故①正确,
②由①中证得∠ADE=∠DBF,
∴∠EDB=∠FBA,
∵B、C、D、G四个点在同一个圆上,∠BDC=60°,∠DBC=60°,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,
∴∠BGE=180°﹣∠BGC﹣∠DGC=180°﹣60°﹣60°=60°,
∴FGD=60°,
∴FGH=120°,
又∵∠ADB=60°,
∴F、G、H、D四个点在同一个圆上,
∴∠EDB=∠HFB,
∴∠FBA=∠HFB,
∴FH∥AB,
故②正确,
③∵B、C、D、G四个点在同一个圆上,∠DBC=60°,
∴∠DGH=∠DBC=60°,
∵∠EGB=60°,
∴∠DGH=∠EGB,
由①中证得∠ADE=∠DBF,
∴∠EDB=∠FBA,
∴△DGH∽△BGE,
故③正确,
④如下图
∵CG为⊙O的直径,点B、C、D、G四个点在同一个圆⊙O上,
∴∠GBC=∠GDC=90°,
∴∠ABF=120°﹣90°=30°,
∵∠A=60°,
∴∠AFB=90°
∴AF=AB,
又∵∠DBF=60°﹣30°=30°,∠ADB=60°,
∴∠DFB=90°,
∴FD=BD,
∵AB=BD,
∴DF=AF,
故④正确,
故选:D.
点评: 此题综合考查了圆及菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,运用四点共圆找出相等的角是解题的关键.解题时注意各知识点的融会贯通.
2. (2014•甘肃白银、临夏,第10题3分)如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是( )
3.(2014•甘肃兰州,第15题4分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是( )
三、解答题
1. (2014•上海,第25题14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.
(1)当圆C经过点A时,求CP的长;
(2)联结AP,当AP∥CG时,求弦EF的长;
(3)当△AGE是等腰三角形时,求圆C的半径长.
2. (2014•四川巴中,第31题12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴.
(1)求抛物线的解析式;
(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.
考点:二次函数综合题.
分析:(1)根据抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,得到方程组,解方程组即可求出抛物线的解析式;
(2)由于点M到达抛物线的对称轴时需要3秒,所以t≤3,又当点M到达原点时需要2秒,且此时点H立刻掉头,所以可分两种情况进行讨论:①当0<t≤2时,由△AMP∽△AOC,得出比例式,求出PM,AH,根据三角形的面积公式求出即可;②当2<t≤3时,过点P作PM⊥x轴于M,PF⊥y轴于点F,表示出三角形APH的面积,利用配方法求出最值即可.
解答:(1)∵抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,
∴,解得:,∴抛物线的解析式是:y=x2﹣x﹣4,
(2)分两种情况:
①当0<t≤2时,∵PM∥OC,∴△AMP∽△AOC,
∴=,即=,∴PM=2t.
解方程x2﹣x﹣4=0,得x1=﹣2,x2=4,
∵A(﹣2,0),∴B(4,0),∴AB=4﹣(﹣2)=6.
∵AH=AB﹣BH=6﹣t,
∴S=PM•AH=×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,
当t=2时S的最大值为8;
②当2<t≤3时,过点P作PM⊥x轴于M,作PF⊥y轴于点F,则△COB∽△CFP,
又∵CO=OB,
∴FP=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AH=4+(t﹣2)=t+1,
∴S=PM•AH=(6﹣t)(t+1)=﹣t2+4t+3=﹣(t﹣)2+,
当t=时,S最大值为.
综上所述,点M的运动时间t与△APQ面积S的函数关系式是S=,S的最大值为.
点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.
3. (2014•山东威海,第25题12分)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.
(1)求这条抛物线的解析式;
(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;
(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.
4. (2014•山东枣庄,第25题10分)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).
(1)求∠OBC的度数;
(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;
(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.
5. (2014•山东潍坊,第22题12分)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
(1)求证:AE⊥BF;
(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin∠BQP的值;
(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.
考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;解直角三角形.
分析:(1)由四边形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由BE=CF,即可证得△ABE≌△BCF,可得∠BAE=∠CBF,由∠ABF+∠CBF=900可得∠ABF+∠BAE=900,即AE⊥BF;
(2)由△BCF≌△BPF, 可得CF=PF,BC=BP,∠BFE=∠BFP,由CD∥AB得∠BFC=∠ABF,从而QB=QF,设PF为x,则BP为2x,在Rt△QBF中可求 QB为x,即可求得答案;
(3)由可求出△AGN的面积,进一步可求出四边形GHMN的面积.
解答:(1)证明:∵E、F分别是正方形ABCD边BC、CD的中点,∴CF=BE,
∴Rt△ABE≌Rt△BCF ∴∠BAE=∠CBF 又∵∠BAE+∠BEA=900,∴∠CBF+∠BEA=900,
∴∠BGE=900, ∴AE⊥BF
(2)根据题意得:FP=FC,∠PFB=∠BFC,∠FPB=900,
∵CD∥AB, ∴∠CFB=∠ABF,∴∠ABF=∠PFB.∴QF=QB
令PF=k(k>O),则PB=2k,
在Rt△BPQ中,设QB=x, ∴x2=(x-k)2+4k2, ∴x=k,∴sin∠BQP=
(3)由题意得:∠BAE=∠EAM,又AE⊥BF, ∴AN=AB=2,
∵ ∠AHM=900, ∴GN//HM, ∴ ∴
∴ 四边形GHMN=SΔAHM - SΔAGN=1一=
答:四边形GHMN的面积是.
点评:此题考查了相似三角形的判定与性质、正方形的性质、全等三角形的判定与性质以及三角函数等知识.此题综合性较强,难度较大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
6. (2014•山东潍坊,第24题13分)如图,抛物线y=ax2+bx+c(a≠O)与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;
(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。
考点:二次函数综合题.
分析:(1)把三点坐标代入函数式,列式求得a,b,c的值,即求出解析式;
(2)设存在点K,使得四边形ABFC的面积为17,根据点K在抛物线y=-x2+2x+3上设点K的坐标为:(x,-x2+2x+3),根据S四边形ABKC=S△AOC+S梯形ONKC+S△BNK得到有关x的一元二次方程求出x即可..
(3)将x=1代入抛物线解析式,求出y的值,确定出D坐标,将x=1代入直线BC解析式求出y的值,确定出E坐标,求出DE长,将x=m代入抛物线解析式表示出F纵坐标,将x=m代入直线BC解析式表示出P纵坐标,两纵坐标相减表示出线段PQ,由DE与QP平行,要使四边形PEDQ为平行四边形,只需DE=PQ,列出关于m的方程,求出方程的解得到m的值,检验即可.
解:(1)由抛物线经过点C(O,4)可得c=4,① ∵对称轴x= =1,∴b=-2a,②,
又抛物线过点A(一2,O)∴0=4a-2b+c,③
由①②③ 解得:a=, b=1 ,c=4. 所以抛物线的解析式是y=x+x+4
(2)假设存在满足条件的点F,如图如示,连接BF、CF、OF.
过点F分别作FH⊥x轴于H , FG⊥y轴于G.
设点F的坐标为(t, t2+t+4),其中O ∴△OBF=OB.FH=×4×(t2+4t+4)=一t2+2t+8 ,S△OFC=OC.FC=×4×t=2t ∴S四边形ABFC—S△AOC+S△OBF +S△OFC=4-t2+2t+8+2t=-t2+4t+12. 令一t2+4t+12 =17,即t2-4t+5=0,则△=(一4)2-4×5=一4<0, ∴方程t2 -4t+5=0无解,故不存在满足条件的点F. (3)设直线BC的解析式为y=kx+b(k≠O),又过点B(4,0,), C(0,4) 所以,解得:, 所以直线BC的解析式是y=一x+4.由y=x2+4x+4=一(x一1)2+,得D(1,), 又点E在直线BC上,则点E(1,3),于是DE=一3= . 若以D.E.P.Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ, 设点P的坐标是(m,一m+4),则点Q的坐标是(m,一t2+m+4). ①当O 由一m2+2m= ,解得:m=1或3.当m=1时,线段PQ与DE重合,m=-1舍去, ∴m=-3,此时P1 (3,1). ②当m 由m2—2m=,解得m=2±,经检验适合题意, 此时P2(2+,2一),P3(2一,2+). 综上所述,满足条件的点P有三个,分别是P1 (3,1),P2(2+,2 -),P3(2—,2十). [ 点评:此题考查了二次函数综合题,涉及的知识有:坐标与图形性质,一次函数与坐标轴的交点,抛物线与坐标轴的交点,平行四边形的判定,以及待定系数法求函数解析式,熟练掌握待定系数法是解本题第二问的关键.本题逻辑思维性强,需要耐心和细心,是道好题. 7. (2014•山东烟台,第26题12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D. (1)求抛物线的表达式; (2)点B关于直线AC的对称点是否在抛物线上?请说明理由; (3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由. ] 考点:二次函数综合题. 分析:(1)把点B的坐标代入抛物线的表达式即可求得. (2)通过△AOC∽△CFB求得OC的值,通过△OCD∽△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论. (3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果. 解答:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=, ∴抛物线的表达式为y=x2﹣x﹣. (2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90° ∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF, ∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=, 设OC=m,则CF=2﹣m,则有=,解得m=m=1,∴OC=OF=1, 当x=0时y=﹣,∴OD=,∴BF=OD, ∵∠DOC=∠BFC=90°,∴△OCD∽△FCB,∴DC=CB,∠OCD=∠FCB, ∴点B、C、D在同一直线上, ∴点B与点D关于直线AC对称, ∴点B关于直线AC的对称点在抛物线上. (3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则, 解得k=﹣, ∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣. 解得x=2或x=﹣2, 当x=﹣2时y=﹣x+=﹣×(﹣2)+=, ∴点E的坐标为(﹣2,),∵tan∠EDG===, ∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°, ∴∠OAC=∠EDG,∴ED∥AC. 点评:本题考查了待定系数法求解析式,三角形相似的判定及性质,以及对称轴的性质和解三角函数等知识的理解和掌握. 8. (2014山东济南,第26题,9分)如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D. (1)求的值; (2)求的值及直线AC的解析式; (3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值. 【解析】(1)由反比例函数的 图象经过点A(,1),得; 由反比例函数得 点B的坐标为(1,),于是有 ,, AD=,则由可得CD=2,C点纵坐标是-1,直线AC的截距是-1,而且过点A(,1)则直线解析式为. (3)设点M的坐标为, 则点N的坐标为,于是面积为 , 所以,当时,面积取得最大值. 9.(2014•山东聊城,第25题,12分)如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A(4,3),O(0,0),B(6,0).点M是OB边上异于O,B的一动点,过点M作MN∥AB,点P是AB边上的任意点,连接AM,PM,PN,BN.设点M(x,0),△PMN的面积为S. (1)求出OA所在直线的解析式,并求出点M的坐标为(1,0)时,点N的坐标; (2)求出S关于x的函数关系式,写出x的取值范围,并求出S的最大值; (3)若S:S△ANB=2:3时,求出此时N点的坐标. 10. (2014•浙江杭州,第21题,10分)在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P(以点P为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(,1)是其中一个圆P的圆心坐标. (1)写出其余满足条件的圆P的圆心坐标; (2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长. 11.(2014•遵义27.(14分))如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动. (1)求该二次函数的解析式及点C的坐标; (2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由. (3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标. 12.(2014•十堰25.(12分))已知抛物线C1:y=a(x+1)2﹣2的顶点为A,且经过点B(﹣2,﹣1). (1)求A点的坐标和抛物线C1的解析式; (2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值; (3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由. 13.(2014•娄底26.(10分))如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7. (1)求抛物线的解析式; (2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由 14.(2014•娄底27.(10分))如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:[ww@w%.zzstep&.#com~] (1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少? (2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′ (3)当t为何值时,△APQ是等腰三角形? 15.(2014年湖北咸宁23.(10分))如图1,P(m,n)是抛物线y=﹣1上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H. 【探究】 (1)填空:当m=0时,OP= 1 ,PH= 1 ;当m=4时,OP= 5 ,PH= 5 ; 【证明】 (2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想. 【应用】 (3)如图2,已知线段AB=6,端点A,B在抛物线y=﹣1上滑动,求A,B两点到直线l的距离之和的最小值. 考点: 二次函数综合题.菁优网 分析: (1)m记为P点的横坐标.m=0时,直接代入x=0,得P(0,﹣1),则OP,PH长易知.当m=4时,直接代入x=4,得P(4,3),OP可有勾股定理求得,PH=yP﹣(﹣2). (2)猜想OP=PH.证明时因为P为所有满足二次函数y=﹣1的点,一般可设(m,﹣1).类似(1)利用勾股定理和PH=yP﹣(﹣2)可求出OP与PH,比较即得结论. (3)考虑(2)结论,即函数y=﹣1的点到原点的距离等于其到l的距离.要求A、B两点到l距离的和,即A、B两点到原点的和,若AB不过点O,则OA+OB>AB=6,若AB过点O,则OA+OB=AB=6,所以OA+OB≥6,即A、B两点到l距离的和≥6,进而最小值即为6. 解答: (1)解:OP=1,PH=1;OP=5,PH=5. 如图1,记PH与x轴交点为Q, 当m=0时,P(0,﹣1).此时OP=1,PH=1. 当m=4时,P(4,3).此时PQ=3,OQ=4, ∴OP==5,PH=yP﹣(﹣2)=3﹣(﹣2)=5. (2)猜想:OP=PH. 证明:过点P作PQ⊥x轴于Q, ∵P在二次函数y=﹣1上, ∴设P(m,﹣1),则PQ=|﹣1|,OQ=|m|, ∵△OPQ为直角三角形, ∴OP=====, PH=yP﹣(﹣2)=(﹣1)﹣(﹣2)=, ∴OP=PH. (3)解: 如图2,连接OA,OB,过点A作AC⊥l于C,过点B作BD⊥l于D,此时AC即为A点到l的距离,BD即为B点到l的距离. [来 则有OB=BD,OA=AC, 在△AOB中, ∵OB+OA>AB, ∴BD+AC>AB. 当AB过O点时, ∵OB+OA=AB, ∴BD+AC=AB. 综上所述,BD+AC≥AB, ∵AB=6, ∴BD+AC≥6,即A,B两点到直线l的距离之和的最小值为6. 点评: 本题考查了学生对函数与其图象的理解,另外涉及一些点到直线距离,利用勾股定理就坐标系中两点间的距离及最短距离等知识点,总体来说难度不高,但知识新颖易引发学生对数学知识的兴趣,非常值得学生练习. 16. (2014年湖北咸宁24.(12分))如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s). (1)∠PBD的度数为 45° ,点D的坐标为 (t,t) (用t表示); (2)当t为何值时,△PBE为等腰三角形? (3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值. 考点: 四边形综合题;解一元一次方程;全等三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质.菁优网 专题: 压轴题;探究型. 分析: (1)易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标. (2)由于∠EBP=45°,故图1是以正方形为背景的一个基本图形,容易得到EP=AP+CE.由于△PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值. (3)由(2)已证的结论EP=AP+CE很容易得到△POE周长等于AO+CO=8,从而解决问题. 解答: 解:(1)如图1, 由题可得:AP=OQ=1×t=t(秒) ∴AO=PQ. ∵四边形OABC是正方形, ∴AO=AB=BC=OC, ∠BAO=∠AOC=∠OCB=∠ABC=90°. ∵DP⊥BP, ∴∠BPD=90°. ∴∠BPA=90°﹣∠DPQ=∠PDQ. ∵AO=PQ,AO=AB, ∴AB=PQ. 在△BAP和△PQD中, ∴△BAP≌△PQD. ∴AP=DQ,BP=PD. ∵∠BPD=90°,BP=PD, ∴∠PBD=∠PDB=45°. ∵AP=t, ∴DQ=t. ∴点D坐标为(t,t). 故答案为:45°,(t,t). (2)①若PB=PE, 则∠PBE=∠PEB=45°. #om^]∴∠BPE=90°. ∵∠BPD=90° ∴∠BPE=∠BPD. ∴点E与点D重合. ∴点Q与点O重合. 与条件“DQ∥y轴”矛盾, ∴这种情况应舍去. ②若EB=EP, 则∠PBE=∠BPE=45°. ∴∠BEP=90°. ∴∠PEO=90°﹣∠BEC=∠EBC. 在△POE和△ECB中 ∴△POE≌△ECB. ∴OE=BC,OP=EC. ∴OE=OC. ∴点E与点C重合(EC=0). ∴点P与点O重合(PO=0). ∵点B(﹣4,4) ∴AO=CO=4. 此时t=AP=AO=4. ③若BP=BE, 在Rt△BAP和Rt△BCE中, ∴Rt△BAP≌Rt△BCE(HL). ∴AP=CE. ∵AP=t, ∴CE=t. ∴PO=EO=4﹣t ∵∠POE=90°, ∴PE= =(4﹣t). 延长OA到点F,使得AF=CE,连接BF,如图2所示. 在△FAB和△ECB中, ∴△FAB≌△ECB. ∴FB=EB,∠FBA=∠EBC. ∵∠EBP=45°,∠ABC=90°, ∴∠ABP+∠EBC=45°. ∴∠FBP=∠FBA+∠ABP =∠EBC+∠ABP=45°. ∴∠FBP=∠EBP. 在△FBP和△EBP中 ∴△FBP≌△EBP. ∴FP=EP. ∴EP=FP=FA+AP =CE+AP. ∴EP=t+t=2t. ∴(4﹣t)=2t. 解得:t=4﹣4 ∴当t为4秒或(4﹣4)秒时,△PBE为等腰三角形. (3)∵EP=CE+AP, ∴OP+PE+OE=OP+AP+CE+OE =AO+CO =4+4 =8. ∴△POE周长是定值,该定值为8. 点评: 本题考查了正方形的性质、等腰三角形的性质、全等三角形的性质与判定、勾股定理等知识,考查了分类讨论的思想,考查了利用基本活动经验解决问题的能力,综合性非常强.熟悉正方形与一个度数为45°的角组成的基本图形(其中角的顶点与正方形的一个顶点重合,角的两边与正方形的两边分别相交)是解决本题的关键. 17. ( 2014年河南) 23. (11分)如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-x+3与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m。 (1)求抛物线的解析式; (2)若PE =5EF,求m的值; (3)若点E/是点E关于直线PC的对称点、是否存在点P,使点E/落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由。 解:(1)∵抛物线y=-x2+bx+c与x轴交于A (-1,0) , B(5,0)两点, ∴ ∴ ∴抛物线的解析式为y=-x2+4x+5.………3分 (2)点P横坐标为m, 则P(m,-m2+4m+5),E(m,-m+3),F(m,0), ∵点P在x轴上方,要使PE=5EF,点P应在y轴右侧,∴ 0<m<5. PE=-m2+4m+5-(-m+3)= -m2+m+2……4分 分两种情况讨论: ①当点E在点F上方时,EF=-m+3. ∵PE=5EF,∴-m2+m+2=5(-m+3)[ 即2m2-17m+26=0,解得m1=2,m2=(舍去)……………6分 ②当点E在点F下方时,EF=m-3. ∵PE=5EF,∴-m2+m+2=5(m-3), 即m2-m-17=0,解得m3=,m4=(舍去), ∴m的值为2或……………………………………………8分 (3),点P的坐标为P1(-,),P2(4,5), P3(3-,2-3).………11分 【提示】∵E和E/关于直线PC对称,∴∠E/CP=∠ECP; 又∵PE∥y轴,∴∠EPC=∠E/CP=∠PCE, ∴PE=EC, 又∵CE=CE/,∴.四边形PECE/为菱形. 过点E作EM⊥y轴于点M,∴△CME∽△COD,∴CE=. ∵PE=CE,∴-m2+m+2=m或-m2+m+2=-m, 解得m1=-,m2=4, m3=3-,m4=3+(舍去) 可求得点P的坐标为P1(-,),P2(4,5), P3(3-,2-3)。 18. (2014•江苏苏州,第27题8分)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF. (1)若⊙O的半径为3,∠DAB=120°,求劣弧的长; (2)求证:BF=BD; (3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系. 19. (2014•江苏苏州,第28题9分)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为,矩形ABCD的移动速度为/s,设移动时间为t(s) (1)如图①,连接OA、AC,则∠OAC的度数为 105 °; (2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长); (3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图). [来#源:中国教~^育出版*网@] 20. (2014•江苏徐州,第28题10分)如图,矩形ABCD的边AB=,AD=,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG. (1)试说明四边形EFCG是矩形; (2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中, ①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由; ②求点G移动路线的长. 考点: 圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.菁优网 专题: 压轴题;存在型. 分析: (1)只要证到三个内角等于90°即可. (2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可. 解答: 解:(1)证明:如图1, ∵CE为⊙O的直径, ∴∠CFE=∠CGE=90 ∵EG⊥EF, ∴∠FEG=90°. ∴∠CFE=∠CGE=∠FEG=90°. ∴四边形EFCG是矩形. (2)①存在. 连接OD,如图2①, ∵四边形ABCD是矩形, ∴∠A=∠ADC=90°. ∵点O是CE的中点, ∴OD=OC. ∴点D在⊙O上. ∵∠FCE=∠FDE,∠A=∠CFE=90°, ∴△CFE∽△DAB. ∴=()2. ∵AD=4,AB=3, ∴BD=5, S△CFE=()2•S△DAB =××3×4 =. ∴S矩形ABCD=2S△CFE =. ∵四边形EFCG是矩形, ∴FC∥EG. ∴∠FCE=∠CEG. ∵∠GDC=∠CEG,∠FCE=∠FDE, ∴∠GDC=∠FDE. ∵∠FDE+∠CDB=90°, ∴∠GDC+∠CDB=90°. ∴∠GDB=90° Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示. 此时,CF=CB=4. Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD, 如图2②所示, 此时⊙O与射线BD相切,CF=CD=3. Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′, 如图2③所示. S△BCD=BC•CD=BD•CF″′. ∴4×3=5×CF″′ ∴CF″′=. ∴≤CF≤4. ∵S矩形ABCD=, ∴×()2≤S矩形ABCD≤×42. ∴≤S矩形ABCD≤12. ∴矩形EFCG的面积最大值为12,最小值为. ②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″, ∴点G的移动路线是线段DG″. ∵∠GDC=∠FDE,∠DCG″=∠A=90°, ∴△DCG″∽△DAB. ∴=. ∴=. ∴DG″=. ∴点G移动路线的长为. [来 点评: 本题考查了矩形的判定与性质、相似三角形的判定与性质、圆周角定理、直角三角形斜边上的中线等于斜边的一半、垂线段定理等知识,考查了动点的移动的路线长,综合性较强.而发现∠CDG=∠ADB及∠FCE=∠ADB是解决本题的关键. 21. (2014•江苏盐城,第27题12分)【问题情境】老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF. 小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF. 小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF. 【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF; 请运用上述解答中所积累的经验和方法完成下列两题: 【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值; 【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和. [来源:zzs*#~te%^p.com] 22. (2014•山东淄博,第24题9分)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点. (1)使∠APB=30°的点P有 无数 个; (2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标; (3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由. 考点: 圆的综合题;三角形的外角性质;等边三角形的性质;勾股定理;矩形的判定与性质;垂径定理;圆周角定理;切线的性质.菁优网 专题: 综合题;探究型. 分析: (1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个. (2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标. (3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题. 解答: 解:(1)以AB为边,在第一象限内作等边三角形ABC, 以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2. 在优弧AP1B上任取一点P,如图1, 则∠APB=∠ACB=×60°=30°. ∴使∠APB=30°的点P有无数个. 故答案为:无数. (2)①当点P在y轴的正半轴上时, 过点C作CG⊥AB,垂足为G,如图1. ∵点A(1,0),点B(5,0), ∴OA=1,OB=5. ∴AB=4. ∵点C为圆心,CG⊥AB, ∴AG=BG=AB=2. ∴OG=OA+AG=3. ∵△ABC是等边三角形, ∴AC=BC=AB=4. ∴CG= = =2. ∴点C的坐标为(3,2). 过点C作CD⊥y轴,垂足为D,连接CP2,如图1, ∵点C的坐标为(3,2), ∴CD=3,OD=2. ∵P1、P2是⊙C与y轴的交点, ∴∠AP1B=∠AP2B=30°. ∵CP2=CA=4,CD=3, ∴DP2==. ∵点C为圆心,CD⊥P1P2, ∴P1D=P2D=. ∴P2(0,2﹣).P1(0,2+). ②当点P在y轴的负半轴上时, 同理可得:P3(0,﹣2﹣).P4(0,﹣2+). 综上所述:满足条件的点P的坐标有: (0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+). (3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大. ①当点P在y轴的正半轴上时, 连接EA,作EH⊥x轴,垂足为H,如图2. ∵⊙E与y轴相切于点P, ∴PE⊥OP ∵EH⊥AB,OP⊥OH, ∴∠EPO=∠POH=∠EHO=90°. ∴四边形OPEH是矩形. ∴OP=EH,PE=OH=3 ∴EA=3. ∵∠EHA=90°,AH=2,EA=3, ∴EH= = = ∴OP= ∴P(0,). ②当点P在y轴的负半轴上时, 同理可得:P(0,﹣). 理由: ①若点P在y轴的正半轴上, 在y轴的正半轴上任取一点M(不与点P重合), 连接MA,MB,交⊙E于点N,连接NA,如图2所示. ∵∠ANB是△AMN的外角, ∴∠ANB>∠AMB. ∵∠APB=∠ANB, ∴∠APB>∠AMB. ②若点P在y轴的负半轴上, 同理可证得:∠APB>∠AMB. 综上所述:当点P在y轴上移动时,∠APB有最大值, 此时点P的坐标为(0,)和(0,﹣). 点评: 本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键. 23.(2014•四川泸州,第25题,12分)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0). (1)求二次函数的最大值; (2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值; (3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标. 24.(2014•四川内江,第21题,9分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC. (1)求一次函数、反比例函数的解析式; (2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由. 25.(2014•四川内江,第28题,12分)如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO. (1)求抛物线的解析式; (2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值; (3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由. 26.(2014•四川南充,第25题,10分)如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D (1)求抛物线的解析式; (2)当m为何值时,S四边形OBDC=2S△BPD; (3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 分析(1)由x=0时带入y=x﹣1求出y的值求出B的坐标,当x=﹣3时,代入y=x﹣1求出y的值就可以求出A的坐标,由待定系数法就可以求出抛物线的解析式 (2)连结OP,由P点的横坐标为m可以表示出P、D的坐标,可以表示出S四边形OBDC和2S△BPD建立方程求出其解即可 (3)如图2,当∠APD=90°时,设出P点的坐标,就可以表示出D的坐标,由△APD∽△FCD就可与求出结论,如图3,当∠PAD=90°时,作AE⊥x轴于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性质就可以求出结论. 解:(1)∵y=x﹣1,∴x=0时,y=﹣1,∴B(0,﹣1). 当x=﹣3时,y=﹣4,∴A(﹣3,﹣4). ∵y=x2+bx+c与直线y=x﹣1交于A、B两点,∴,∴, ∴抛物线的解析式为:y=x2+4x﹣1; (2)∵P点横坐标是m(m<0),∴P(m,m2+4m﹣1),D(m,m﹣1) 如图1①,作BE⊥PC于E, ∴BE=﹣m. CD=1﹣m,OB=1,OC=﹣m,CP=1﹣﹣m2, ∴PD=1﹣﹣m2﹣1+m=﹣﹣m2, ∴, 解得:m1=0(舍去),m2=﹣2,m3=﹣; 如图1②,作BE⊥PC于E, ∴BE=﹣m. PD=1﹣﹣m2+1﹣m=2﹣﹣m2, ∴, 解得:m=0(舍去)或m=﹣3 ∴m=﹣,﹣2或﹣3时S四边形OBDC=2S△BPD; (3))如图2,当∠APD=90°时,设P(a,a2+4a﹣1),则D(a,a﹣1), ∴AP=m+4,CD=1﹣m,OC=﹣m,CP=1﹣﹣m2, ∴DP=1﹣﹣m2﹣1+m=﹣﹣m2. 在y=x﹣1中,当y=0时,x=1,∴(1,0),∴OF=1, ∴CF=1﹣m.AF=4.∵PC⊥x轴,∴∠PCF=90°, ∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,, ∴, 解得:m=1舍去或m=﹣2, ∴P(﹣2,﹣5) 如图3,当∠PAD=90°时,作AE⊥x轴于E, ∴∠AEF=90°.CE=﹣3﹣m,EF=4,AF=4,PD=1﹣m﹣(1﹣﹣m2)=+m2. ∵PC⊥x轴,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴, ∴AD=(﹣3﹣m).∵△PAD∽△FEA,∴,∴, ∴m=﹣2或m=﹣3 ∴P(﹣2,﹣5)或(﹣3,﹣4)与点A重合,舍去, ∴P(﹣2,﹣5). 点评: 本题考查了待定系数法求二次函数的解析式的运用,四边形的面积公式的运用,三角形的面积公式的运用,相似三角形的判定及性质的运用,解答时函数的解析式是关键,用相似三角形的性质求解是难点. 27.(2014•四川宜宾,第22题,10分)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称. (1)求A、B两点的坐标; (2)求△ABC的面积. 28.(2014•四川宜宾,第24题,12分)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点. (1)求抛物线的解析式; (2)判断△MAB的形状,并说明理由; (3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由. 29.(2014•福建福州,第22题14分) 如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D. (1)求点A,B,D的坐标; (2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD. 求证:∠AEO=∠ADC; (3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙O的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标 【答案】(1),,;(2)证明见解析;(3)(5, 1);(3,1)或.. 【解析】 可得,即,联立二方程解得或,从而得到点Q (3)由⊙E的半径为1,根据勾股定理得, 考点:1.二次函数综合题;2.单动点问题;3.曲线上点的坐标与方程的关系;4.直角三角形两锐角的关系;5.相似三角形的判定和性质;6.勾股定理和逆定理;7.切线的性质;8.二次函数的性质;9.解二元二次方程组. 30.(2014•甘肃白银,第28题12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3. (1)求点M、A、B坐标; (2)联结AB、AM、BM,求∠ABM的正切值 (3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标. 31.(2014•甘肃兰州,第28题12分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2). (1)求抛物线的表达式; (2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由; (3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标. 32.(2014•广州,第24题14分)~已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,顶点为C.点P(m,n)(n<0)为抛物线上一点. (1)求抛物线的解析式与顶点C的坐标. (2)当∠APB为钝角时,求m的取值范围. (3)若,当∠APB为直角时,将该抛物线向左或向右平移t()个单位,点P、C移动后对应的点分别记为、,是否存在t,使得首尾依次连接A、B、、所构成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由. 【考点】动点问题.(1)二次函数待定系数法 (2)存在性问题,相似三角形; (3)最终问题,轴对称,两点之间线段最短 【答案】(1)解:依题意把的坐标代入得: ;解得: 抛物线解析式为 顶点横坐标,将代入抛物线得 (2)如图,当时,设, 则 过作直线轴, (注意用整体代入法) 解得 , 当在之间时, 或时,为钝角. (3)依题意,且 设移动(向右,向左) 连接 则 又的长度不变 四边形周长最小,只需最小即可 将沿轴向右平移5各单位到处 沿轴对称为 ∴当且仅当、B、三点共线时,最小,且最小为,此时 ,设过的直线为,代入 ∴ 即 将代入,得:,解得: ∴当,P、C向左移动单位时,此时四边形ABP’C’周长最小。 33.(2014•广州,第25题14分)如图7,梯形中,,,,,,点为线段上一动点(不与点 重合),关于的轴对称图形为,连接,设,的面积为,的面积为. (1)当点落在梯形的中位线上时,求的值; (2)试用表示,并写出的取值范围; (3)当的外接圆与相切时,求的值. 【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有: 在中,有 在中, 又 解得: (2)如图2,交于点,与关于对称, 则有:, 又 又与关于对称, (3)如图3,当的外接圆与相切时,则为切点. 的圆心落在的中点,设为 则有,过点作, 连接,得 则 又 解得:(舍去) ① ② ③ 34.(2014•广东梅州,第23题11分)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C. (1)直接写出A、D、C三点的坐标; (2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标; (3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.