八年级[丄]数学期末《全等三角形》《轴对称》复习提优题【大海之音组卷】
一.选择题(共4小题)
1.如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )
2.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④ED=2AB.其中正确的是( )
3.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=S△ABP,其中正确的是( )
4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④;⑤M到AD的距离等于BC的一半;其中正确的有( )
二.解答题(共8小题)
5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,
(1)当n=1时,则AF= _________ ;
(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.
6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.
(1)则= _________ ,∠CBE= _________ 度;
(2)当把△DEF绕点C旋转到如图2所示的位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则= _________ ,∠CFE= _________ 度;
(3)把△DEC绕点C旋转到如图3所示的位置时,请求出∠CFE的度数 _________ .
7.已知△ABC为边长为10的等边三角形,D是BC边上一动点:
①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数.
②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG的值为定值;②DG﹣CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值.
8.如图,点A、C分别在一个含45°的直角三角板HBE的两条直角边BH和BE上,且BA=BC,过点C作BE的垂线CD,过E点作EF上AE交∠DCE的角平分线于F点,交HE于P.
(1)试判断△PCE的形状,并请说明理由;
(2)若∠HAE=120°,AB=3,求EF的长.
9.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.
(1)求证:∠B与∠AHD互补;
(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.
10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连接GF.
(1)FG与DC的位置关系是 _________ ,FG与DC的数量关系是 _________ ;
(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请证明你的结论.
11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.
(1)试探究EP与FQ之间的数量关系,并证明你的结论.
(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?
(3)图2中的△ABC与△AEF的面积相等吗?(不用证明)
12.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.
①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.
②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?
③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?
八年级[丄]数学期末《全等三角形》《轴对称》复习提优题【大海之音组卷】
参考答案与试题解析
一.选择题(共4小题)
1.如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )
2.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④ED=2AB.其中正确的是( )
3.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=S△ABP,其中正确的是( )
4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④;⑤M到AD的距离等于BC的一半;其中正确的有( )
二.解答题(共8小题)
5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,
(1)当n=1时,则AF= 2 ;
(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.
6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.
(1)则= 1 ,∠CBE= 45 度;
(2)当把△DEF绕点C旋转到如图2所示的位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则= 1 ,∠CFE= 45 度;
(3)把△DEC绕点C旋转到如图3所示的位置时,请求出∠CFE的度数 135° .
7.已知△ABC为边长为10的等边三角形,D是BC边上一动点:
①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数.
②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG的值为定值;②DG﹣CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值.
8.如图,点A、C分别在一个含45°的直角三角板HBE的两条直角边BH和BE上,且BA=BC,过点C作BE的垂线CD,过E点作EF上AE交∠DCE的角平分线于F点,交HE于P.
(1)试判断△PCE的形状,并请说明理由;
(2)若∠HAE=120°,AB=3,求EF的长.
9.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.
(1)求证:∠B与∠AHD互补;
(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.
10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连接GF.
(1)FG与DC的位置关系是 FG⊥CD ,FG与DC的数量关系是 FG=CD ;
(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请证明你的结论.
11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.
(1)试探究EP与FQ之间的数量关系,并证明你的结论.
(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?
(3)图2中的△ABC与△AEF的面积相等吗?(不用证明)
12.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.
①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.
②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?
③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?