当前位置:首页 > 八年级 > 数学

八年级上册数学10月月考试题及答案

试卷简介

这份试卷是针对初二学生设计的数学考试试卷,总分为150分,考试时间为120分钟。试卷分为A卷(100分)和B卷(50分)。A卷包括选择题、填空题、计算题和解答题,而B卷则主要由填空题和解答题构成。试题内容涵盖了初中数学的多个重要知识点,如直角三角形的性质、二次根式、函数表达式、几何图形的性质与计算等。

所涉及的知识点

这份数学试卷考察了初中生对直角三角形性质、二次根式化简、函数表达式理解、数轴上点的位置、长方体最短路径、立方根计算、正方形与等边三角形的性质、勾股定理的应用、全等三角形的证明以及几何图形面积计算等多个知识点的理解和应用能力。

2015级(初二上)10月考试试题

数 学

(考试时间120分钟,满分150分)

初2015级 班 姓名

A卷(共100分)

一、选择题(每小题3分,共30分)

每小题给出4个选项,只有一项符合要求,请把选出的选项填在答题卷的答题表中.

若,则估计的值所在范围是( )

B、 C、 D、

适合下列条件的中,是直角三角形的个数有( )

① ② ③ ④

A、2个 B、3个 C、4个 D、5个

已知,则的平方根是( )

A、3 B、 C、9 D、

下列各组数中,互为相反数的是( )

A、 B、 C、 D、

5、在二次根式中,是最简二次根式的有( )

A、2个 B、3个 C、4个 D、5个

在,高,则的周长是( )

A、42 B、32 C、42或32 D、30或35

小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现绳子刚好接触地面,则旗杆的高度是( )

A、8米 B、10米

C、12米 D、14米

8、如图所示,在中,平分,交于点,且,则点到的距离是( )

A、3 B、4

C、5 D、6

已知等边三角形的边长为,则它边上的高、面积分别是( )

B、 C、 D、

已知是的整数部分,是的小数部分,则的值是( )

B、

C、 D、

填空题(每小题4分,共16分)

设,用含的式子表示=

在关系式中,自变量的取值范围是

实数在数轴上的位置如图所示,则化简=

如图所示,已知长方体木箱长其中点E是线段的一个三等分点,在长方体木箱的下底面A处有一只蚂蚁,想沿着表面爬到上表面E处吃食物,则蚂蚁爬行的最短路程是

计算或解方程(共18分)

15、计算下列各题(每小题3分,共12分)

(1) (2)

(3) (4)

解方程(每小题3分,共6分)

(2)

解答题(每小题8分,共16分)

17、在中,已知,求

已知,,求的立方根?

解答题(每小题10分,共20分)

(每小题5分,共10分)

先化简,再求值:,其中

已知满足条件,求的算术平方根?

(本题10分)如图,在中,是的中点,分别交于.

猜想线段的数量关系。并证明你的结论。

求证:

初2015级 班 姓名

B卷(共50分)

填空题(每小题4分,共20分)

如图,在矩形中,在数轴上,若以点A为圆心,对角线为半径作弧,交数轴的正半轴于点,则点所对应的实数是

在中,已知,边上的高,则=

如图,网格中的小正方形的边长均为1,的三个顶点均在格点上,则中边上的高为

已知都是正整数,且,则=

如图,是正方形的边上一点,且,为线段上一动点,则的最小值是

(本题8分)

已知,求下列代数式的值

(2)

(本题共10分)

27、如图,在等腰中,为斜边的中点,分别为边上的点,且,若

判断的形状,并说明理由

求的面积?

28、(本题12分)

问题:如图,在等边内部有一点,已知,求的度数?

解决方法:通过观察发现的长度符合勾股数,但由于不在一个三角形中,想法将这些条件集中在一个三角形,于是可将绕逆时针旋转到,此时

这样利用等边三角形和全等三角形知识,便可求出= °

请写出解题过程:

应用:请你利用(1)题的思路,解答下面的问题:

如图,在中,为的点,且

求证:

石室锦外初2015级(初二上)10月考试试题

数 学 答 案

A卷(共100分)

一、选择题(每小题3分,共30分)

二、(每小题4分,共16分)

11、 12、 13、7 14、20

三、(共18分)

15、(每小题3分,共12分)

(1) (2) (3) (4)

16、(每小题3分,共6分)

(1) (2)

四、(共16分)

17、 18、

五、(共20分)

19、

20、(1) 用ASA证明即可

(2)去证明是的垂直平分线,从而得到,

又用“三线合一”去说明

最后在中,用勾股定理,便可得到结论。

(每小题4分,共20分)21、 22、84或36 23、 24、1110 25、5

(共8分)26、

(共10分) 27、 (1) 是等腰直角三角形。连接,去证明即可 (2)

(本题12分)

28、(1) 证明等边三角形、全等三角形、勾股定理

(2)将绕点A逆时针旋转至即可。

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:41218 获取网盘提取码
前往网盘下载
点击下载文档
解决的问题
还需要掌握