当前位置:首页 > 八年级 > 数学

初二数学下册期中考试题及答案

试卷简介

这份试卷是2014年最新人教版八年级下册数学期中考试题,涵盖了多个数学概念和定理的应用。试卷包括选择题、填空题、证明题以及解答题,内容涉及二次根式、矩形、菱形、正方形、平行四边形、翻折、旋转、等边三角形等多个几何图形及其性质,以及一些代数运算。

所涉及的知识点

这份试卷主要考查了初中数学几何部分的知识,包括二次根式的简化、矩形和菱形的性质、正方形的对角线特性、平行四边形的性质、图形翻折和旋转的性质、等边三角形的性质以及全等三角形和平行四边形的判定。

2014年最新人教版八年级下数学期中考试题及答案

一、选择题(每小题2分,共12分)

1.下列式子中,属于最简二次根式的是( )

A. B. C. D.

2. 如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,

连接BM、DN.若四边形MBND是菱形,则等于( )

A. B. C. D.

3.若代数式有意义,则实数的取值范围是( )

A. ≠ 1B. ≥. >0D. ≥0且 ≠1

4. 如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,

∠EFB=60°,则矩形ABCD的面积是 ( )

A.12 B. . D.

5. 如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5 º,

EF⊥AB,垂足为F,则EF的长为( )

A.1 B. C.4-2 D.3-4

6.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是( )

A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2

二、填空题:(每小题3分,共24分)

7.计算:= .

8.若在实数范围内有意义,则的取值范围是 .

9.若实数、满足,则= .

10.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数书为 .

11.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .

12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD成为菱形.(只需添加一个即可)

13 .如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为,∠A=120°,则EF= .

22.如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.

(1)求证:DE=BF;

(2)连接EF,写出图中所有的全等三角形.(不要求证明)

五、解答题(每小题8分,共16分)

23. 如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.

(1)求证:DE=EF;

(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.

24. 2013如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC。

(1)求证;OE=OF;

(2)若BC=,求AB的长。

六解答题:(每小题10分,共20分)

25. 如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.

(1)求证:四边形ABCE是平行四边形;

(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.

26. 如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).

(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;

(2)填空:

①当t为_________s时,四边形ACFE是菱形;

②当t为_________s时,以A、F、C、E为顶点的四边形是直角梯形.

参考答案

1.B;2.C;3.D;4.D;5.C;6.C;7.-7;8. ≤;9. ;10.25°;11. (8052,0);12. OA=OC或AD=BC或AD∥BC或AB=BC;13. ;14. 或3;

15. ;

16. 解:∵四边形ABCD是菱形,对角线AC与BD相交于O,

∴AC⊥BD,DO=BO,

∵AB=5,AO=4,

∴BO==3,

∴BD=2BO=2×3=6.

∴DE=BF,DE∥BF,

∴四边形BFDE为平行四边形;

(2)解:∵四边形BFDE为为菱形,

∴BE=ED,∠EBD=∠FBD=∠ABE,

∵四边形ABCD是矩形,

∴AD=BC,∠ABC=90°,

∴∠ABE=30°,

∵∠A=90°,AB=2,

∴AE==,BE=2AE=,

∴BC=AD=AE+ED=AE+BE=+=2.

20. (1) ∵BD平分ABC,∴ABD=CBD。又∵BA=BC,BD=BD,

∴△ABD △CBD。∴ADB=CDB。 (4分)

(2) ∵PMAD,PNCD,∴PMD=PND=90。

又∵ADC=90,∴四边形MPND是矩形。

∵ADB=CDB,PMAD,PNCD,∴PM=PN。

∴四边形MPND是正方形。

21.(1)略

(2)

22. 证明:(1)∵四边形ABCD是平行四边形,

∴DC∥AB,

∴∠CDE=∠AED,

∵DE平分∠ADC,

∴∠ADE=∠CDE,

∴∠ADE=∠AED,

∴AE=AD,

同理CF=CB,又AD=CB,AB=CD,

∴AE=CF,

∴DF=BE,

∴四边形DEBF是平行四边形,

∴DE=BF,

(2)△ADE≌△CBF,△DFE≌△BEF.

23.

24. (1)证明:∵四边形ABCD是矩形 ∴AB∥CD,∠OAE=∠OCF,∠OEA=∠OFC

∵AE=CF ∴△AEO≌△CFO(ASA) ∴OE=OF

(2)连接BO ∵OE=OF,BE=BF ∴BO⊥EF且∠EBO=∠FBO ∴∠BOF=900

∵四边形ABCD是矩形 ∴∠BCF=900 又∵∠BEF=2∠BAC,∠BEF=∠BAC+∠EOA

∴∠BAC=∠EOA ∴AE=OE ∵AE=CF,OE=OF ∴OF=CF 又∵BF=BF

∴△BOF≌△BCF(HL) ∴∠OBF=∠CBF ∴∠CBF=∠FBO=∠OBE

∵∠ABC=900 ∴∠OBE=300 ∴∠BEO=600 ∴∠BAC=300

∴AC=2BC=,

∴AB=

25.(1)证明:∵Rt△OAB中,D为OB的中点,

∴DO=DA,

∴∠DAO=∠DOA=30°,∠EOA=90°,

∴∠AEO=60°,

又∵△OBC为等边三角形,

∴∠BCO=∠AEO=60°,

∴BC∥AE,

∵∠BAO=∠COA=90°,

∴CO∥AB,

∴四边形ABCE是平行四边形;

(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,

在Rt△ABO中,

∵∠OAB=90°,∠AOB=30°,BO=8,

AO=,

在Rt△OAG中,OG2+OA2=AG2,

x2+(4)2=(8﹣x)2,

解得:x=1,

∴OG=1.

26.(1) 证明:∵

∵是边的中点

又∵

∴△ADE≌△CDF

(2)①∵当四边形是菱形时,∴

由题意可知:,∴

②若四边形是直角梯形,此时

过作于M,,可以得到,

即,∴,

此时,重合,不符合题意,舍去。

若四边形若四边形是直角梯形,此时,

∵△ABC是等边三角形,F是BC中点,

∴,得到

经检验,符合题意。

∴① ②

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:41651 获取网盘提取码
前往网盘下载
点击下载文档
解决的问题
还需要掌握