当前位置:首页 > 九年级 > 数学

26.3 实际问题与二次函数练习题及答案

试卷简介

这套试卷包含了几道实际应用题,涉及到了二次函数、利润计算、最优化问题等。其中,第一题探讨了商场如何合理分配营业额给各个部门以实现最大的利润;第二题讨论了宾馆如何定价以获得最大利润;第三题考察了学生注意力随时间变化的规律及其在教学中的应用;第四题涉及活蟹的放养策略及利润最大化问题;第五题和第六题则通过几何图形的运动来探讨面积的变化。这些题目旨在考察学生将数学知识应用于实际问题的能力。

所涉及的知识点

实际问题中的二次函数应用,利润计算,最优化策略,几何图形的动态变化分析。

26.3 实际问题与二次函数

某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货

员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x,y和z(单位:万元,x、y、z都是整数)。(1)请用含x的代数式分别表示y和z;(2)若商场预计每日的总利润为C(万元),且C满足19≤C≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员?

2.某宾馆有50个房间供游客居住。当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。房价为多少时,宾馆利润最大?

3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y随时间t的变化规律有如下关系(04黄冈)

(1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中?

(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?

(3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目?

4. 有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去。假设放养期内蟹的个体重量基本保持不变。现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时的市场价为每千克30元。据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。

(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;

(2)如果放养x天后将活蟹一次性出售,并记蟹的销售总额为Q元,写出Q与x的函数关系式;

(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用)?增大利润是多少?

5.如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。

(1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式;

(2)当AP的长为何值时,S△PCQ= S△ABC

6. 1在矩形ABCD中,AB=,BC=,点P从点A出发,沿AB边向点B以/秒的速度移动,同时,点Q从点B出发沿BC边向点C以/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:

(1)运动开始后第几秒时,△PBQ的面积等于2

(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;t为何值时S最小?求出S的最小值。

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:45577 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握