16.1.1 从分数到分式
第1课时
课前自主练
1.________________________统称为整式.
2.表示_______÷______的商,那么(2a+b)÷(m+n)可以表示为________.
3.甲种水果每千克价格a元,乙种水果每千克价格b元,取甲种水果m千克,乙种水果n千克,混合后,平均每千克价格是_________.
课中合作练
题型1:分式、有理式概念的理解应用
4.(辨析题)下列各式,,x+y,,-3x2,0中,是分式的有___________;是整式的有___________;是有理式的有_________.
题型2:分式有无意义的条件的应用
5.(探究题)下列分式,当x取何值时有意义.
(1); (2).
6.(辨析题)下列各式中,无论x取何值,分式都有意义的是( )
A. B. C. D.
7.(探究题)当x______时,分式无意义.
题型3:分式值为零的条件的应用
8.(探究题)当x_______时,分式的值为零.
题型4:分式值为±1的条件的应用
9.(探究题)当x______时,分式的值为1;
当x_______时,分式的值为-1.
课后系统练
基础能力题
10.分式,当x_______时,分式有意义;当x_______时,分式的值为零.
11.有理式①,②,③,④中,是分式的有( )
A.①② B.③④ C.①③ D.①②③④
12.分式中,当x=-a时,下列结论正确的是( )
A.分式的值为零; B.分式无意义
C.若a≠-时,分式的值为零; D.若a≠时,分式的值为零
13.当x_______时,分式的值为正;当x______时,分式的值为负.
14.下列各式中,可能取值为零的是( )
A. B. C. D.
15.使分式无意义,x的取值是( )
A.0 B.1 C.-1 D.±1
拓展创新题
16.(学科综合题)已知y=,x取哪些值时:(1)y的值是正数;(2)y的值是负数;(3)y的值是零;(4)分式无意义.
17.(跨学科综合题)若把x克食盐溶入b克水中,从其中取出m克食盐溶液,其中含纯盐________.
18.(数学与生活)李丽从家到学校的路程为s,无风时她以平均a米/秒的速度骑车,便能按时到达,当风速为b米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.
19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a天完成,若甲组单独完成需要b天,乙组单独完成需_______天.
20.(探究题)若分式-1的值是正数、负数、0时,求x的取值范围.
21.(妙法巧解题)已知-=3,求的值.
22.(2005.杭州市)当m=________时,分式的值为零.
答案
1.单项式和多项式 2.2,3, 3.(元)
4.,;,x+y,-3x2,0;,,x+y,,-3x2,0
5.(1)x≠-, (2)x≠ 6.D
7. 8.-1 9.-,
10.≠±2,=0 11.C 12.C 13.<5,任意实数
14.B 15.D
16.当
当x=1时,y值为零,当x=时,分式无意义.
17.克
18.(-)秒
19.
20.当x>2或x<-2时,分式的值为正数;
当-2 当x=2时,分式的值为0. 21. 22.3