2013-2014学年八年级数学下学期期末考试卷
沉着、冷静、快乐地迎接5月月考,相信你能行!
一、选择题:(每小题3分,共30分,每小题只有一个答案)
1.在数轴上表示不等式x ≥-2的解集,正确的是( )
A B C D
2.已知,则下列不等式不成立的是 ( ).
A. B. C. D.
3.函数y=kx+b(k、b为常数,k0)的图象如右图所示,
则关于x的不等式kx+b>0的解集为( ).
A.x>0 B.x<0 C.x<2 D.x>2
4.下列从左到右的变形中,是分解因式的是( )
A.a2–4a+5=a(a–4)+5 B.(x+3)(x+2)=x2+5x+6
C.a2–9b2=(a+3b)(a–3b) D.(x+3)(x–1)+1=x2+2x+2
5. 已知一个多边形的内角和是540°,则这个多边形是( )
A.四边形 B.五边形 C.六边形 D.七边形
6. 如右图所示,DE是线段AB的垂直平分线,下列结论一定成立的是( )
A. ED=CD B. ∠DAC=∠B
C. ∠C>2∠B D. ∠B+∠ADE=90°
7.下列四个分式的运算中,其中运算结果正确的有 ( )
①; ②;③;④;
A.0个 B.1个 C.2个 D. 3个
8.若将分式中的a与b的值都扩大为原来的2倍,则这个分式的值将( )
A.扩大为原来的2倍 B.分式的值不变 C.缩小为原来的 D.缩小为原来的
9.几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设参加旅游的同学共有x人,则根据题意可列方程 ( )
A. B. C.=2 D.
10. 如右图,点E是ABCD的边CD的中点,AD、BE的延长线相交于
点F,DF=3,DE=2,则ABCD的周长为( )
A.5 B.7 C.10 D.14
二、填空题:(每小题3分,共30分)
11.不等式的非负整数解是 .
12.若a2+kab+25b2是一个完全平方式,则k= .
13、如图,在△ABC中,∠C=90°,D为BC上的一点,且DA=DB,
DC=AC.则∠B= 度;
(第13题图) (第14题图) (第15题图)
14、如图,△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°,BD=1.5cm,则
AB= cm;
15.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使
△ABE≌△ACD,需添加的一个条件是 (只写一个条件即可).
16、当x 时,分式的值为零。
17、分解因式:m3 - 4m = 。
18. 化简:的结果是_________。
19、分式方程+1=有增根,则m= .
20、若的值是__________.
三、解答题:(共计60分)
21、分解因式和利用分解因式计算. (每小题4分,满分共8分)
(1) ( 2)已知求代数式的值.
22、(本小题满分5分) 解不等式组,并把解集在数轴上表示出来。
23、(本小题满分5分) 解方程:
24、化简与求值:(每小题4分,共计8分)
(1)化简: (2)先化简:,
再任选一个你喜欢的数a代入求值。
25. (本小题满分9分) (1)如图,在方格纸中如何通过平移或旋转这两种变换,由图形A 得到图形B,再由图形B先 (怎样平移),
再 (怎样旋转)得到图形C(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度);
(2)如图,如果点P、P3的坐标分别为(0,0)、(2,1),写出点P2的坐标是 ;
(3)图形B能绕某点Q顺时针旋转90°得到图形C,则点Q的坐标是 ;
(4)图形A能绕某点R顺时针旋转90°得到图形C,则点R的坐标是 ;
注:方格纸中的小正方形的边长为1个单位长度。
26、(本小题满分5分)已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.
求证:AD平分∠BAC.
27、(本小题满分5分)甲,乙两地相距360km,新修的高速公路开通后,在甲,乙两地之间行驶的长途汽车平均车速提高了50%,而从甲地到乙地的时间缩短了2h。试确定原来的平均车速。
28、(本小题满分6分)如图,ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)连接AF、CE,四边形AFCE是平行四边形吗?请证明 你的结论.
29、(本小题满分9分)在云南省中小学标准化建设工程中,我校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购进2台电脑和1台电子白板需要2.5万元。
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.