当前位置:首页 > 八年级 > 数学

八年级数学(上)第十一章三角形检测题有答案

试卷简介

这份三角形检测题涵盖了多个方面,包括三角形的组成条件、特殊三角形(如等腰三角形)、三角形的性质及应用等。题目类型多样,既有选择题也有解答题,旨在全面考察学生对三角形相关知识的理解和应用能力。

所涉及的知识点

本试卷主要考察学生对三角形基本性质、特殊三角形的性质以及多边形内角和公式的理解和应用。

第十一章 三角形检测题

(本检测题满分:100分,时间:90分钟)

一、选择题(每小题3分,共30分)

1.以下列各组线段长为边,能组成三角形的是( )

A.,, B.,,

C.,, D., ,

2.等腰三角形的两边长分别为和,则此三角形的周长是( )

A. B. C. D.或

3.如图,一扇窗户打开后,用窗钩可将其固定,

这里所运用的几何原理是(  )

A.三角形的稳定性    

B.两点之间线段最短

C.两点确定一条直线   

D.垂线段最短

4.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定(  )

A.小于直角   B.等于直角   C.大于直角  D.不能确定

5.下列说法中正确的是(  )

A.三角形可分为斜三角形、直角三角形和锐角三角形

B.等腰三角形任何一个内角都有可能是钝角或直角

C.三角形外角一定是钝角

D.在△ABC中,如果∠AB∠C,那么∠A60°,∠C60°

6.(2014·重庆中考)五边形的内角和是( )

A.180° B.360° C.540° D.600°

7.不一定在三角形内部的线段是( )

A.三角形的角平分线 B.三角形的中线

C.三角形的高 D.以上皆不对

8.已知△ABC中,,周长为12,,则b为( )

三、解答题(共46分)

19.(6分)一个凸多边形,除了一个内角外,其余各内角的和为2 750°,求这个多边形的边数.

20.(6分)如图所示,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为和的两部分,求三角形各边的长.

[来源:学+科+网Z+X+X+K]

21.(6分)有人说,自己的步子大,一步能走多,你相信吗?用你学过的数学知识说明理由.

22.(6分)已知一个三角形有两边长均为,第三边长为,若该三角形的边长都为整数,试判断此三角形的形状.

23.(6分)如图所示,武汉有三个车站A、B、C成三角形,一辆公共汽车从B站前往到

C站.

(1)当汽车运动到点D时,刚好BD=CD,连接AD,AD这条线段是什么线段?这样的线段在△ABC中有几条?此时有面积相等的三角形吗?

(2)汽车继续向前运动,当运动到点E时,发现∠BAE=∠CAE,那么AE这条线段是什么线段?在△ABC中,这样的线段又有几条?

(3)汽车继续向前运动,当运动到点F时,发现∠AFB=∠AFC=90°,则AF是什么线段?这样的线段有几条?

24.(8分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.

25.(8分) 规定,满足(1)各边互不相等且均为整数,(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为比高三角形,其中k叫做比高系数.根据规定解答下列问题:

(1)求周长为13的比高三角形的比高系数k的值.

(2)写出一个只有4个比高系数的比高三角形的周长.

第十一章 三角形检测题参考答案

1.B 解析:根据三角形中任何两边的和大于第三边可知能组成三角形的只有B,故选B.

2.C 解析:因为三角形中任何两边的和大于第三边,所以腰只能是,所以此三角形的周长是10+10+5=25(cm).故选C.

3.A 解析:本题主要考查了三角形的稳定性在生活中的应用.

4.C 解析:因为在△ABC中,∠ABC+∠ACB180°,

所以

所以∠BOC90°.故选C.

5.D 解析:A.三角形包括直角三角形和斜三角形,斜三角形又包括锐角三角形和钝角三角形,所以A错误;

B.等腰三角形只有顶角可能是钝角或直角,所以B错误;

C.三角形的外角可能是钝角、锐角也可能是直角,所以C错误;

D.因为△ABC中,∠A∠B∠C,若∠A≤60°或∠C≥60°,则与三角形的内角和为180°相矛盾,所以原结论正确,故选D.

6.C 解析:多边形的内角和公式是,当时,.

7.C 解析:因为三角形的中线、角平分线都在三角形的内部,而钝角三角形的高有的在三角形的外部,所以答案选C.

8.B 解析:因为,所以.

又,所以故选B.

9.B 解析: .

.

10.C 解析:如图所示:∵ AE、BD是直角三角形中两锐角平分线,

∴ ∠OAB+∠OBA=90°÷2=45°.

两角平分线组成的角有两个:∠BOE与∠EOD,

根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,

∴ ∠EOD=180°-45°=135°,故选C.

11.140 解析:根据三角形内角和定理得∠C=40°,则∠C的外角为.

12.270 解析:如图,根据题意可知∠5=90°,

∴ ∠3+∠4=90°, ∴ ∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°.

13. 解析:利用多边形内角和定理进行计算.

因为边形与边形的内角和分别为和,

所以内角和增加.

14.27°或63° 解析:当等腰三角形为钝角三角形时,如图①所示,

.

第14题答图

当等腰三角形为锐角三角形时,如图②所示:

.

15. 解析:因为为△ABC的三边长,

所以,,

所以原式=

16.10<<36 解析:在△ABC中,AB-BCACAB+BC,所以1048;

在△ADC中,AD-DCACAD+DC,所以436.所以1036.

17.72 解析:正五边形ABCDE的每个内角为 =108°,由△AED是等腰三角形得,∠EAD=(180°-108°)=36°,所以∠DAB=∠EAB-∠EAD=108°-36°=72°.

18.35 解析:设这个多边形的边数为,则,所以这个多边形是十边形.因为边形的对角线的总条数为,所以这个多边形的对角线的条数为.

19.分析:由于除去的一个内角大于0°且小于180°,因此题目中有两个未知量,但等量关系只有一个,在一些竞赛题目中常常会出现这种问题,这就需要依据条件中两个未知量的特殊含义去求值.

解:设这个多边形的边数为(为自然数),除去的内角为°(0<<180),

根据题意,得

∵ ∴

∴ ,∴ .

点拨:本题在利用多边形的内角和公式得到方程后,又借助角的范围,通过解不等式得到了这个多边形的边数.这也是解决有关多边形的内、外角和问题的一种常用方法.

20.分析:因为BD是中线,所以AD=DC,造成所分两部分不等的原因就在于腰与底的不等,故应分情况讨论.

解:设AB=AC=2,则AD=CD=,

(1)当AB+AD=30,BC+CD=24时,有2=30,

∴ =10,2 =20,BC=24-10=14.

三边长分别为:,,.

(2)当AB+AD=24,BC+CD=30时,有=24,

∴ =8,,BC=30-8=22.三边长分别为:,,.

21.分析:人的两腿可以看作是两条线段,走的步子也可看作是线段,则这三条线段正好构成三角形的三边,就应满足三边关系定理.

解:不能. 如果此人一步能走多,由三角形三边的关系得,此人两腿长的和大于,这与实际情况不符. 所以他一步不能走多.

22.分析:已知三角形的三边长,根据三角形的三边关系,列出不等式,再求解.

解:根据三角形的三边关系,得 <<, 0<<6-, 0<<. 因为2,3-x均为正整数,所以=1. 所以三角形的三边长分别是2,2,2. 因此,该三角形是等边三角形.

23.分析:(1)由于BD=CD,则点D是BC的中点,AD是中线,三角形的中线把三角形分成两个面积相等的三角形;

(2)由于∠BAE=∠CAE,所以AE是三角形的角平分线;

(3)由于∠AFB=∠AFC=90°,则AF是三角形的高线.

解:(1)AD是△ABC中BC边上的中线,三角形中有三条中线.此时△ABD与△ADC的面积相等.

(2)AE是△ABC中∠BAC的角平分线,三角形中角平分线有三条. (3)AF是△ABC中BC边上的高线,高线有时在三角形外部,三角形有三条高线.

24.分析:灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB. 证明:∵ DG⊥BC,AC⊥BC(已知), ∴ ∠DGB=∠ACB=90°(垂直定义),

∴ DG∥AC(同位角相等,两直线平行). ∴ ∠2=∠ACD(两直线平行,内错角相等).

∵ ∠1=∠2(已知),

∴ ∠1=∠ACD(等量代换),

∴ EF∥CD(同位角相等,两直线平行). ∴ ∠AEF=∠ADC(两直线平行,同位角相等). ∵ EF⊥AB(已知),∴ ∠AEF=90°(垂直定义),

∴ ∠ADC=90°(等量代换).

∴ CD⊥AB(垂直定义).

25.分析:(1)根据定义结合三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析;

(2)根据比高三角形的知识结合三角形三边关系求解只有4个比高系数的三角形的周长.

解:(1)根据定义和三角形的三边关系,知此比高三角形的三边是2,5,6或3,4,6,则k=3或2.

(2)如周长为37的比高三角形,只有4个比高系数,当比高系数为2时,这个三角形三边分别为9、10、18或8、13、16,当比高系数为3时,这个三角形三边分别为6、13、18,当比高系数为6时,这个三角形三边长分别为3、16、18,当比高系数为9时,这个三角形三边分别为2、17、18.

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:41583 获取网盘提取码
前往网盘下载
点击下载文档
解决的问题
还需要掌握