当前位置:首页 > 八年级 > 数学

八年级数学(上)第一章勾股定理检测题及答案

试卷简介

这份勾股定理检测题包含选择题、填空题和解答题,旨在评估学生对勾股定理的理解及应用能力。题目涵盖了直角三角形的性质、勾股定理的应用、直角三角形的判定、实际生活中的应用等内容,难度适中。

所涉及的知识点

勾股定理及其应用,直角三角形的性质与判定,实际生活中的数学问题解决。

第一章 勾股定理检测题

(本检测题满分:100分,时间:90分钟)

一、选择题(每小题3分,共30分)

1.下列说法中正确的是( )

A.已知是三角形的三边,则

B.在直角三角形中,两边的平方和等于第三边的平方

C.在Rt△ABC中,∠C=90°,所以

D.在Rt△ABC中,∠B=90°,所以

2.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来

的( )

A.1倍 B.2倍 C.3倍 D.4倍

3.在△ABC中,AB=6,AC=8,BC=10,则该三角形为( )

A.锐角三角形 B.直角三角形

C.钝角三角形 D.等腰直角三角形

4.如图,已知正方形B的面积为144,如果正方形C的面积为169,那么正方形A的面积 为( )

A.313 B.144 C.169 D.25

5.如图,在Rt△ABC中,∠ACB=90°,若AC=5 cm,BC=12 cm,则Rt△ABC斜边上的高CD的长为( )

A. B. C.cm D.cm

6.下列满足条件的三角形中,不是直角三角形的是( )

A.三内角之比为1︰2︰3 B.三边长的平方之比为1︰2︰3

C.三边长之比为3︰4︰5 D.三内角之比为3︰4︰5

7.如图,在△ABC中,∠ACB=90°,AC=40,BC=9,点M,N在AB上,且AM=AC,BN=BC,则MN的长为( )

A.6 B.7 C.8 D.9

A

8.如图,一圆柱高8 cm,底面半径为 cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是( )

A.6 cm B.8 cm C.10 cm D.12 cm

9.如果一个三角形的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,那么这个三角形一定是( )

A.锐角三角形 B.直角三角形

C.钝角三角形 D.等腰三角形

10.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,已知a∶b=3∶4,c=10,则△ABC的面积为( )

A.24 B.12 C.28 D.30

二、填空题(每小题3分,共24分)

11.现有两根木棒的长度分别是40 cm和50 cm,若要钉成一个三角形木架,其中有一个角新*课*标*第*一*网]

为直角,则所需木棒的最短长度为________.

12.在△ABC中,AB=AC=17 cm,BC=16 cm,AD⊥BC于点D,则AD=_______.

13.在△ABC中,若三边长分别为9,12,15,则以两个这样的三角形拼成的长方形的面积为________.

14.如图,某会展中心在会展期间准备将高5 m,长13 m,宽2 m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要________元钱.

15.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果三边长满足,那么△ABC中互余的一对角是_________.

16.若一个直角三角形的一条直角边长是7 cm,另一条直角边比斜边短1 cm,则该直角三角形的斜边长为________.

17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 cm,则正方形A,B,C,D的面积之和为___________cm2.

18.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一

条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草.

三、解答题(共46分)

19.(6分)若△ABC三边长满足下列条件,判断△ABC是不是直角三角形,若是,请说明哪个角是直角.

(1);

(2)△ABC中,∠A,∠B,∠C所对的边分别为a,b,c, .

20.(6分)如图,为修铁路需凿通隧道AC,现测量出∠ACB=90°,AB=5 km,BC=4 km,若每天凿隧道0.2 km,问几天才能把隧道AC凿通?

21.(6分)若三角形的三个内角的比是1︰2︰3,最短边长为1,最长边长为2.

求:(1)这个三角形各内角的度数;

(2)另外一条边长的平方.

22.(7分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂吗? 23.(7分)老师在一次“探究性学习”课中,设计了如下数表:

(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:

a=__________,b=__________,c=__________.

(2)以a,b,c为边长的三角形是不是直角三角形?

为什么?

24.(7分)如下页图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10 cm,AB=8 cm,

求:(1)FC的长;(2)EF的长.

25.(7分)如图,在长方体中,,AD=3,一只蚂蚁从A点出发,沿长方体表面爬到点,求蚂蚁怎样走路程最短,最短路程是多少?

本文为《中学教材全解》配套习题,提供给老师和学生无偿使用。是原创产品,若转载做他用,请联系编者。编者电话:0536-2228658。

第一章 勾股定理检测题参考答案

1.C 解析:A.不确定三角形是不是直角三角形,故A选项错误;B.不确定第三边是不是斜边,故B选项错误;C.∠C=90°,所以其对边为斜边,故C选项正确;D.∠B=90°时,有b2=a2+c2,所以a2+b2=c2不成立,故D选项错误.

2.B 解析:设原直角三角形的两直角边长分别是a,b,斜边长是c,则a2+b2=c2,则扩大后的直角三角形两直角边长的平方和为斜边长的平方为,即斜边长扩大到原来的2倍,故选B.

3.B 解析:在△ABC中,由AB=6,AC=8,BC=10,可推出AB2+AC2=BC2.由勾股定理的逆定理知此三角形是直角三角形,故选B.

4.D 解析:设三个正方形A,B,C的边长依次为a,b,c,因为三个正方形的边组成一个直角三角形,所以a2+b2=c2,故SA+SB=SC,即SA=169-144=25.

5.C 解析:由勾股定理可知,所以AB=13 cm,再由三角形的面积公式,有,得.

6.D 解析:在A选项中,求出三角形的三个内角分别是30°,60°,90°;在B,C选项中,都符合勾股定理的条件,所以A,B,C选项中的三角形都是直角三角形.在D选项中,求出三角形的三个内角分别是45°,60°,75°,所以不是直角三角形,故选D.

7.C 解析:因为在Rt△ABC中,AC=40,BC=9,所以由勾股定理得AB=41.因为BN=BC=9,,所以.

8.C 解析:如图为圆柱的侧面展开图,∵ 为的中点,则就是蚂蚁爬行的最短路径.∵ (cm),

∴ (cm).

∵ cm,∴=100(cm),所以AB= 10 cm,即蚂蚁要爬行的最短路程是10 cm.

9.B 解析:由,整理,得,即,所以,符合,所以这个三角形一定是直角三角形.

10.A 解析:因为a∶b=3∶4,所以设a=3k,b=4k(k>0).在Rt△ABC中,∠C=90°,由勾股定理,得a2+b2=c2,因为c=10,所以9k2+16k2=100,

解得k=2,所以a=6,b=8,

所以S△ABC=ab=×6×8=24.故选A.

11.30 cm 解析:当50 cm长的木棒构成直角三角形的斜边时,设最短的木棒长为x cm(x>0),由勾股定理,得,解得x=30.

12.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角的平分线互相重合,∴

∵BC=16,∴

∵ AD⊥BC,∴∠ADB=90°.

在Rt△ADB中,∵ AB=AC=17,由勾股定理,得.∴AD=15 cm.

13.108 解析:因为,所以△是直角三角形,且两条直角边长分别为9,12,则以两个这样的三角形拼成的长方形的面积为.

14.612 解析:由勾股定理,得楼梯的底面至楼梯的最高层的水平距离为12 m,所以楼道上铺地毯的长度为5+12=17(m).因为楼梯宽为2 m,地毯每平方米18元,所以铺完这个楼道需要的钱数为18×17×2=612(元).

15.∠与∠ 解析:由,得,所以△是直角三角形,且是斜边,所以∠B=90°,从而互余的一对角是∠与∠.

16. 解析:设直角三角形的斜边长是 ,则另一条直角边长是.根据勾股定理,得,解得,则斜边长是.

17.49 解析:正方形A,B,C,D的面积之和是最大的正方形的面积,即49 .

18.4 解析:在Rt△ABC中,∠C=90°,由勾股定理,得,所以AB=5.他们仅仅少走了(步).

19.解:(1)因为,根据三边长满足的条件,可以判断△是直角三角形,其中∠为直角.

(2)因为,所以

根据三边长满足的条件,可以判断△ABC是直角三角形,其中∠C为直角.

20.解:在Rt△中,由勾股定理,得,

即,解得AC=3,或AC=-3(舍去).

因为每天凿隧道0.2 km,

所以凿隧道用的时间为3÷0.2=15(天).

答:15天才能把隧道AC凿通.

21.解:(1)因为三个内角的比是,

所以设三个内角的度数分别为(k≠0).

由k+2k+3k=180°,得k=30°,所以三个内角的度数分别为30°,60°,90°.

(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2.

设另外一条直角边长为,则,即.

所以另外一条边长的平方为3.

22.分析:旗杆折断的部分、未折断的部分和折断后原旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.

解:设旗杆未折断部分的长为x m,则折断部分的长为(16-x)m,

根据勾股定理,得,

解得 m,即旗杆在离底部6 m处断裂.

23.分析:从表中的数据找到规律.

解:(1)n2-1 2n n2+1

(2)以a,b,c为边长的三角形是直角三角形.

理由如下:

∵a2+b2=(n2-1)2+4n2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2=c2,

∴以a,b,c为边长的三角形是直角三角形.

24.分析:(1)因为将△翻折得到△,所以,则在Rt△中,可求得 的长,从而的长可求;

(2)由于,可设的长为,在Rt△中,利用勾股定理解直角三角形

即可.

解:(1)由题意,得AF=AD=BC=10 cm,

在Rt△ABF中,∠B=90°,

∵ cm,∴,BF=6 cm,

∴ (cm). (2)由题意,得,设的长为,则.

在Rt△中,∠C=90°,

由勾股定理,得即,

解得,即的长为5 cm.

25.分析:要求蚂蚁爬行的最短路程,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.

解:蚂蚁沿如图(1)所示的路线爬行时,长方形,长为,宽为,

连接,则构成直角三角形.

由勾股定理,得. 蚂蚁沿如图(2)所示的路线爬行时,长方形,长为,宽为,

连接,则构成直角三角形.

由勾股定理,得,.

蚂蚁沿如图(3)所示的路线爬行时,长方形长为宽为AB=2,连接,则构成直角三角形.

由勾股定理,得

∴ 蚂蚁从点出发穿过到达点时路程最短,最短路程是5.

本文为《中学教材全解》配套习题,提供给老师和学生无偿使用。是原创产品,若转载做他用,请联系编者。编者电话:0536-2228658。

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:41582 获取网盘提取码
前往网盘下载
点击下载文档
解决的问题
还需要掌握