期末练习2014.6.5
班级 姓名 座号
1.如图1,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数和的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为( )
A.3 B..5 D.10
2.如图2,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA的延长线上,
∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为( )
A.22 B..18 D.16
3.如图3,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为( )
A.3 B. C.2 D.2
4.运动会上初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元;
乙种雪糕共30元,甲种雪糕比乙种雪糕多20根,乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为 ( )
A.-=20 B.-=.-=20 D.-=20
5.如图4,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的关系是S1 S2(填“>”或“<”或“=”)
6.若分式方程2+=有增根,则k=________.
7.先化简,再求值:+·,其中a=+1.
8.如图,直线y=-x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
(1)求点C的坐标;(2)当0<t<5时,求S与t之间的函数关系式;
(3)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.
【答案】C.【解析】
试题分析:连接AO,BO,
因为同底,所以S△AOB=S△ABC,根据k的函数意义,得出面积为:3+2=5.
故选C.
考点:反比例函数系数k的几何意义.
【答案】D.【解析】
试题分析::在Rt△ABC中,
∵AC=6,AB=8,
∴BC=10,
∵E是BC的中点,
∴AE=BE=5,
∴∠BAE=∠B,
∵∠FDA=∠B,
∴∠FDA=∠BAE,
∴DF∥AE,
∵D、E分别是AB、BC的中点,
∴DE∥AC,DE=AC=3
∴四边形AEDF是平行四边形
∴四边形AEDF的周长=2×(3+5)=16.
故选D.
考点1.平行四边形的判定与性质2.勾股定理3.三角形中位线定理.
【答案】B
【解析】连结EF,
∵△ABE≌△GBE.
∴AB=BG=3
AE=EG=AD,
∴EG=ED ∴△EFD≌△EFG,
∴FG=FD=2. ∴BF=BG+FG=5
在Rt△BCF中,BC==2.
10.若函数y=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>-2 B.m<-.m>2 D.m<2
【答案】B
【解析】根据反比例函数的性质,可得m+2<0,从而得出m的取值范围:m<-2.故选B.
【答案】B
【解析】等量关系为甲种雪糕-乙种雪糕=20根,故选B.
【答案】=.ttp://
【解析】
试题分析:设矩形ABCD的边长分别为a,b,S1的边长分别为x,y.
∵MK∥AD
∴,即,则x=•a.
同理:y=•b.
则S1=xy=ab.
同理S2=ab.
所以S1=S2.故答案为S1=S2.
故答案是=.
【答案】1
【解析】方程两边同乘以(x-2),得
2(x-2)+1-kx=-1
因原方程的增根只能是x=2,将x=2
代入上式,得1-2k=-1,k=1.
【答案】
【解析】
解:化简原式=+×
=+=
当a=+1时,原式==.
【答案】(1)300;(2)补图见解析;(3)48°;(4)480.
【解析】
试题分析:(1)用文学的人数除以所占的百分比计算即可得解.
(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.
(3)用体育所占的百分比乘以360°,计算即可得解.
(4)用总人数乘以科普所占的百分比,计算即可得解.
(1)∵90÷30%=300(名),
∴一共调查了300名学生.
(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.
补全折线图如下:
(3)体育部分所对应的圆心角的度数为:×360°=48°.
(4)∵1800×=480(名),
∴1800名学生中估计最喜爱科普类书籍的学生人数为480.
考点:1.折线统计图;2.扇形统计图;3.频数、频率和总量的关系;4.用样本估计总体.
【答案】(1)(3,);(2)当0<t≤时,S=-2(t-)2+,当≤t<5时,S=4(t-5)2,;(3).
【解析】
试题分析:(1)利用已知函数解析式,求两直线的交点,得点C的坐标即可;
(2)根据几何关系把s用t表示,注意当MN在AD上时,这一特殊情况,进而分类讨论得出;
(3)利用(2)中所求,结合二次函数最值求法求出即可.
试题解析: (1)由题意,得
,解得:,
∴C(3,);
(2)∵直线分别与x轴、y轴交于A、B两点,
∴y=0时,,解得;x=8,
∴A点坐标为;(8,0),
根据题意,得AE=t,OE=8-t.
∴点Q的纵坐标为(8-t),点P的纵坐标为-(8-t)+6=t,
∴PQ=(8-t)-t=10-2t.
当MN在AD上时,10-2t=t,
∴t=.
当0<t≤时,S=t(10-2t),即S=-2t2+10t.
当<t<5时,S=(10-2t)2,即S=4t2-40t+100;
当0<t≤时,S=-2(t-)2+,
∴t=时,S最大值=.
当≤t<5时,S=4(t-5)2,
∵t<5时,S随t的增大而减小,
∴t=时,S最大值=.
∵>,
∴S的最大值为.
(3)点(4,)在正方形PQMN内部时t的取值范围是.
考点: 一次函数综合题.