2016-2017学年第一学期初三数学期中压轴题训练(2)
1.如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.
(1)求出抛物线的解析式;
(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.
2.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).
(1)求该二次函数的表达式及点C的坐标;
(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.
①求S的最大值;
②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.
3.如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C
(1)直接写出抛物线的函数解析式;
(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;
(3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.
4.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;
(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.
5.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和对称轴.
(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.
6.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称
(1)填空:点B的坐标是 ;
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;
(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.
7.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)请直接写出点A,C,D的坐标;
(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;
(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.
8.如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.
(1)求抛物线的解析式;
(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;
(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.
9.如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3).
(1)求抛物线的函数表达式;
(2)判断△BCM是否为直角三角形,并说明理由.
(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.
10.如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.
(1)求此抛物线的解析式和直线AB的解析式;
(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?
(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.
11.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.
(1)求这条抛物线的表达式;
(2)联结AB、BC、CD、DA,求四边形ABCD的面积;
(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.
12.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).
(1)求抛物线m的解析式;
(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;
(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.
13.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=.
(1)用含m的代数式表示BE的长.
(2)当m=时,判断点D是否落在抛物线上,并说明理由.
(3)若AG∥y轴,交OB于点F,交BD于点G.
①若△DOE与△BGF的面积相等,求m的值.
②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是 .
14.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.
15.抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.
(1)如图1,若P(1,﹣3),B(4,0).
①求该抛物线的解析式;
②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;
(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
16.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点
(1)求m的值及C点坐标;
(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
(3)P为抛物线上一点,它关于直线BC的对称点为Q
①当四边形PBQC为菱形时,求点P的坐标;
②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.
17.如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.
(1)求直线AB和直线BC的解析式;
(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;
(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K是直角三角形时,求t的值.
18.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.
(1)求抛物线的解析式;
(2)证明:△DBO∽△EBC;
(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.
19.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
20.已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,
(1)求经过A、B、C三点的抛物线的解析式;
(2)在平面直角坐标系xOy中是否存在一点P,使得以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.
21.如图,抛物线y=ax2+bx﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴交于点C.
(1)求抛物线的解析式及顶点D的坐标;
(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;
(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.
22.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.
(1)求出二次函数的表达式以及点D的坐标;
(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O,求此时Rt△A1O与矩形OCDE重叠部分的图形的面积;
(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2,Rt△A2O2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.
23.如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.
(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;
(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?
24.如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的倍.
①求点P的坐标;
②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;
(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.
25.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D
(1)求二次函数的表达式及其顶点坐标;
(2)若P为y轴上的一个动点,连接PD,则PB+PD的最小值为 ;
(3)M(x,t)为抛物线对称轴上一动点
①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有 个;
②连接MA,MB,若∠AMB不小于60°,求t的取值范围.
26.如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.
(1)求抛物线的解析式;
(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;
(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.
27.已知抛物线y=a(x﹣1)2﹣3(a≠0)的图象与y轴交于点A(0,﹣2),顶点为B.
(1)试确定a的值,并写出B点的坐标;
(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;
(3)试在x轴上求一点P,使得△PAB的周长取最小值;
(4)若将抛物线平移m(m≠0)个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.
28.如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点
(1)当m=2时,a= ,当m=3时,a= ;
(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;
(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当△APQ为等腰直角三角形时,a和n的关系式为 ;
(4)利用(2)(3)中的结论,求△AOB与△APQ的面积比.
29.如图①,已知△ABC的三个顶点坐标分别为A(﹣1,0)、B(3,0)、C(0,3),直线BE交y轴正半轴于点E.
(1)求经过A、B、C三点的抛物线解析式及顶点D的坐标;
(2)连接BD、CD,设∠DBO=α,∠EBO=β,若tan (α﹣β)=1,求点E的坐标;
(3)如图②,在(2)的条件下,动点M从点C出发以每秒个单位的速度在直线BC上移动(不考虑点M与点C、B重合的情况),点N为抛物线上一点,设点M移动的时间为t秒,在点M移动的过程中,以E、C、M、N四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的t值及点M的个数;若不能,请说明理由.
30.如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.
(1)求这个二次函数的表达式;
(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;
(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.
参考答案与解析
1.(2016•泸州)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.
(1)求出抛物线的解析式;
(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.
【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;
(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d的值,从而可求得满足条件的D点坐标;
(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△BCN=2S△PMN,可用PF表示出a的值,从而可用PF表示出CN,可求得的值;借助a可表示出M点的坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标.
【解答】解:
(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,
∴,解得,
∴抛物线解析式为y=﹣x2+4x;
(2)存在三个点满足题意,理由如下:
当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,
∵A(1,3),
∴D坐标为(1,0);
当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,
∵△ABD是以AB为斜边的直角三角形,
∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,
∴D点坐标为(0,)或(0,);
综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);
(3)如图2,过P作PF⊥CM于点F,
∵PM∥OA,
∴Rt△ADO∽Rt△MFP,
∴==3,
∴MF=3PF,
在Rt△ABD中,BD=3,AD=3,
∴tan∠ABD=,
∴∠ABD=60°,设BC=a,则CN=a,
在Rt△PFN中,∠PNF=∠BNC=30°,
∴tan∠PNF==,
∴FN=PF,
∴MN=MF+FN=4PF,
∵S△BCN=2S△PMN,
∴a2=2××4PF2,
∴a=2PF,
∴NC=a=2PF,
∴==,
∴MN=NC=×a=a,
∴MC=MN+NC=(+)a,
∴M点坐标为(4﹣a,( +)a),
又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,
解得a=3﹣或a=0(舍去),
OC=4﹣a=+1,MC=2+,
∴点M的坐标为(+1,2+).
【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、勾股定理、相似三角形的判定和性质、点与函数图象的关系及分类讨论等.在(2)中注意分点D在x轴和y轴上两种情况,在(3)中分别利用PF表示出MF和NC是解题的关键,注意构造三角形相似.本题涉及知识点较多,计算量较大,综合性较强,特别是第(3)问,难度很大.
2.(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).
(1)求该二次函数的表达式及点C的坐标;
(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.
①求S的最大值;
②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.
【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标
(2)①连结OF,如图,设F(t,﹣t2+t+8),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;
②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),然后把E(t﹣8,﹣t2+t+12)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.
【解答】解:(1)把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,
所以抛物线的解析式为y=﹣x2+x+8;
当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,
所以C点坐标为(8,0);
(2)①连结OF,如图,设F(t,﹣t2+t+8),
∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,
∴S△CDF=S△ODF+S△OCF﹣S△OCD=•4•t+•8•(﹣t2+t+8)﹣•4•8
=﹣t2+6t+16
=﹣(t﹣3)2+25,
当t=3时,△CDF的面积有最大值,最大值为25,
∵四边形CDEF为平行四边形,
∴S的最大值为50;
②∵四边形CDEF为平行四边形,
∴CD∥EF,CD=EF,
∵点C向左平移8个单位,再向上平移4个单位得到点D,
∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),
∵E(t﹣8,﹣t2+t+12)在抛物线上,
∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,
当t=7时,S△CDF=﹣(7﹣3)2+25=9,
∴此时S=2S△CDF=18.
【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.
3.(2016•钦州)如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C
(1)直接写出抛物线的函数解析式;
(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;
(3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.
【分析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式;
(2)令抛物线解析式中x=0求出点C的坐标,根据点A、B的坐标即可求出其中点M的坐标,由此即可得出CM的长,根据圆中直径对的圆周角为90°即可得出△COM∽△CDE,根据相似三角形的性质即可得出,代入数据即可求出DC的长度;
(3)根据平移的性质求出平移后的抛物线的解析式,令其y=0,求出平移后的抛物线与x轴的交点坐标,由此即可得出点P横坐标的范围,再过点P作PP′⊥y轴于点P′,过点D作DD′⊥y轴于点D′,通过分割图形求面积法找出S△PDE关于x的函数关系式,利用配方结合而成函数的性质即可得出△PDE面积的最大值.
【解答】解:(1)将点A(﹣3,0)、B(1,0)代入y=ax2+bx﹣2中,
得:,解得:,
∴抛物线的函数解析式为y=x2+x﹣2.
(2)令y=x2+x﹣2中x=0,则y=﹣2,
∴C(0,﹣2),
∴OC=2,CE=4.
∵A(﹣3,0),B(1,0),点M为线段AB的中点,
∴M(﹣1,0),
∴CM==.
∵CE为⊙O的直径,
∴∠CDE=90°,
∴△COM∽△CDE,
∴,
∴DC=.
(3)将抛物线向上平移个单位长度后的解析式为y=x2+x﹣2+=x2+x﹣,
令y=x2+x﹣中y=0,即x2+x﹣=0,
解得:x1=,x2=.
∵点P在第三象限,
∴<x<0.
过点P作PP′⊥y轴于点P′,过点D作DD′⊥y轴于点D′,如图所示.
在Rt△CDE中,CD=,CE=4,
∴DE==,sin∠DCE==,
在Rt△CDD′中,CD=,∠CD′D=90°,
∴DD′=CD•sin∠DCE=,CD′==,
OD′=CD′﹣OC=,
∴D(﹣,),D′(0,),
∵P(x, x2+x﹣),
∴P′(0, x2+x﹣).
∴S△PDE=S△DD′E+S梯形DD′P′P﹣S△EPP′=DD′•ED′+(DD′+PP′)•D′P′﹣PP′•EP′=﹣﹣x+2(<x<0),
∵S△PDE=﹣﹣x+2=﹣+,<﹣<0,
∴当x=﹣时,S△PDE取最大值,最大值为.
故:△PDE的面积关于x的函数关系式为S△PDE=﹣﹣x+2(<x<0),且△PDE面积的最大值为.
【点评】本题考查了待定系数法求函数解析式、两点间的距离、相似三角形的判定与性质以及二次函数的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据相似三角形的性质找出边与边之间的关系;(3)利用分割图形求面积法找出S△PDE关于x的函数关系式.本题属于中档题,难度不大,但数据稍显繁琐,本题巧妙的利用了分割图形法求不规则的图形面积,给解题带来了极大的方便.
4.(2016•新疆)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;
(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.
【分析】(1)根据对称轴、A、B点的坐标,可得方程,根据解方程,可得答案;
(2)根据平行四边形的面积公式,可得函数解析式;
(3)根据函数值,可得E点坐标,根据菱形的判定,可得答案.
【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,
将A、B点的坐标代入函数解析式,得
,
解得,
抛物线的解析式为y=﹣x2+x﹣4,
配方,得
y=﹣(x﹣)2+,
顶点坐标为(,);
(2)E点坐标为(x,﹣x2+x﹣4),
S=2×OA•yE=6(﹣x2+x﹣4)
即S=﹣4x2+28x﹣24;
(3)平行四边形OEAF的面积为24时,平行四边形OEAF可能为菱形,理由如下:
当平行四边形OEAF的面积为24时,即
﹣4x2+28x﹣24=24,
化简,得
x2﹣7x+12=0,解得x=3或4,
当x=3时,EO=EA,平行四边形OEAF为菱形.
当x=4时,EO≠EA,平行四边形OEAF不为菱形.
∴平行四边形OEAF的面积为24时,平行四边形OEAF可能为菱形.
【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式,配方法求函数的顶点坐标;利用平行四边形性质是解题关键;利用方程的判别式是解题关键.
5.(2016•六盘水)如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和对称轴.
(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.
【分析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),可以求得抛物线的解析式;
(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;
(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.
【解答】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),
∴,
解得,,
即此抛物线的解析式是y=x2﹣2x﹣3;
(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1;
(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,
设点P的坐标为(1,y),
当PA=PD时,
=,
解得,y=﹣,
即点P的坐标为(1,﹣);
当DA=DP时,
=,
解得,y=﹣4±,
即点P的坐标为(1,﹣4﹣2)或(1,﹣4+);
当AD=AP时,
=,
解得,y=±4,
即点P的坐标是(1,4)或(1,﹣4),
当点P为(1,﹣4)时与点D重合,故不符合题意,
由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣)或(1,﹣4﹣2)或(1,﹣4+)或(1,4).
【点评】本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.
6.(2016•大连)如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称
(1)填空:点B的坐标是 (0,) ;
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;
(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.
【分析】(1)由抛物线解析式可求得A点坐标,再利用对称可求得B点坐标;
(2)可先用k表示出C点坐标,过B作BD⊥l于点D,条件可知P点在x轴上方,设P点纵坐标为y,可表示出PD、PB的长,在Rt△PBD中,利用勾股定理可求得y,则可求出PB的长,此时可得出P点坐标,代入抛物线解析式可判断P点在抛物线上;
(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC的长,代入抛物线解析式可求得P点坐标.
【解答】解:
(1)∵抛物线y=x2+与y轴相交于点A,
∴A(0,),
∵点B与点O关于点A对称,
∴BA=OA=,
∴OB=,即B点坐标为(0,),
故答案为:(0,);
(2)∵B点坐标为(0,),
∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,
∴OC=﹣,
∵PB=PC,
∴点P只能在x轴上方,
如图1,过B作BD⊥l于点D,设PB=PC=m,
则BD=OC=﹣,CD=OB=,
∴PD=PC﹣CD=m﹣,
在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,
即m2=(m﹣)2+(﹣)2,解得m=+,
∴PB+,
∴P点坐标为(﹣, +),
当x=﹣时,代入抛物线解析式可得y=+,
∴点P在抛物线上;
(3)如图2,连接CC′,
∵l∥y轴,
∴∠OBC=∠PCB,
又PB=PC,
∴∠PCB=∠PBC,
∴∠PBC=∠OBC,
又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,
∴∠PBC=∠PBC′,
∴∠OBC=∠CBP=∠C′BP=60°,
在Rt△OBC中,OB=,则BC=1
∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,
∴P点坐标为(,1).
【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于PC的长的方程是解题的关键,在(3)中求得∠OBC=∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.
7.(2016•河池)在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)请直接写出点A,C,D的坐标;
(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;
(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.
【分析】(1)令抛物线解析式中y=0,解关于x的一元二次方程即可得出点A、B的坐标,再令抛物线解析式中x=0求出y值即可得出点C坐标,利用配方法将抛物线解析式配方即可找出顶点D的坐标;
(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,由点C的坐标可找出点C′的坐标,根据点C′、D的坐标利用待定系数法即可求出直线C′D的解析式,令其y=0求出x值,即可得出点E的坐标;
(3)根据点A、C的坐标利用待定系数法求出直线AC的解析式,假设存在,设点F(m,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A、F点的坐标找出点P的坐标,将其代入抛物线解析式中即可得出关于m的一元二次方程,解方程求出m值,再代入点P坐标中即可得出结论.
【解答】解:(1)当y=﹣x2﹣2x+3中y=0时,有﹣x2﹣2x+3=0,
解得:x1=﹣3,x2=1,
∵A在B的左侧,
∴A(﹣3,0),B(1,0).
当y=﹣x2﹣2x+3中x=0时,则y=3,
∴C(0,3).
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点D(﹣1,4).
(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.
∵C(0,3),
∴C′(0,﹣3).
设直线C′D的解析式为y=kx+b,
则有,解得:,
∴直线C′D的解析式为y=﹣7x﹣3,
当y=﹣7x﹣3中y=0时,x=﹣,
∴当△CDE的周长最小,点E的坐标为(﹣,0).
(3)设直线AC的解析式为y=ax+c,
则有,解得:,
∴直线AC的解析式为y=x+3.
假设存在,设点F(m,m+3),
△AFP为等腰直角三角形分三种情况(如图2所示):
①当∠PAF=90°时,P(m,﹣m﹣3),
∵点P在抛物线y=﹣x2﹣2x+3上,
∴﹣m﹣3=﹣m2﹣+3,
解得:m1=﹣3(舍去),m2=2,
此时点P的坐标为(2,﹣5);
②当∠AFP=90°时,P(+3,0)
∵点P在抛物线y=﹣x2﹣2x+3上,
∴0=﹣(+3)2﹣2×(+3)+3,
解得:m3=﹣3(舍去),m4=﹣1,
此时点P的坐标为(1,0);
③当∠APF=90°时,P(m,0),
∵点P在抛物线y=﹣x2﹣2x+3上,
∴0=﹣m2﹣+3,
解得:m5=﹣3(舍去),m6=1,
此时点P的坐标为(1,0).
综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).
【点评】本题考查了解一元二次方程、待定系数法求函数解析式以及等腰直角三角形的性质,解题的关键是:(1)根据二次函数图象上点的坐标特征求出点A、B、C的坐标,利用配方法求出顶点坐标;(2)找出点E的位置;(3)分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.本题属于中档题,难度不大,解决该题型题目时,利用一次函数图象上点的坐标特征设出点F的坐标,再根据等腰直角三角形的性质表示出点P的坐标是关键.
8.(2016•南充)如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.
(1)求抛物线的解析式;
(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;
(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.
【分析】(1)设抛物线为y=a(x+5)(x﹣3),把点(0,5)代入即可解决问题.
(2)作FG⊥AC于G,设点F坐标(m,0),根据sin∠AMF==,列出方程即可解决问题.
(3))①当MN是对角线时,设点F(m,0),由QN=PM,列出方程即可解决问题.②当MN为边时,MN=PQ=,设点Q(m,﹣m2﹣m+5)则点P(m+1,﹣m2﹣m+6),代入抛物线解析式,解方程即可.
【解答】解:(1)∵抛物线与x轴交于点A(﹣5,0),B(3,0),
∴可以假设抛物线为y=a(x+5)(x﹣3),把点(0,5)代入得到a=﹣,
∴抛物线的解析式为y=﹣x2﹣x+5.
(2)作FG⊥AC于G,设点F坐标(m,0),
则AF=m+5,AE=EM=m+6,FG=(m+5),FM==,
∵sin∠AMF=,
∴=,
∴=,整理得到++44=0,
∴(m+4)(+11)=0,
∴m=﹣4或﹣5.5(舍弃),
∴点Q坐标(﹣4,).
(3)①当MN是对角线时,设点F(m,0).
∵直线AC解析式为y=x+5,
∴点N(m,m+5),点M(m+1,m+6),
∵QN=PM,
∴﹣m2﹣m+5﹣m﹣5=m+6﹣[﹣(m+1)2﹣(m+1)+5],
解得m=﹣3±,
∴点M坐标(﹣2+,3+)或(﹣2﹣,3﹣).
②当MN为边时,MN=PQ=,设点Q(m,﹣m2﹣m+5)则点P(m+1,﹣m2﹣m+6),
∴﹣m2﹣m+6=﹣(m+1)2﹣(m+1)+5,
解得m=﹣3.
∴点M坐标(﹣2,3),
综上所述以点P,Q,M,N为顶点的四边形是平行四边形时,点M的坐标为(﹣2,3)或(﹣2+,3+)或(﹣2﹣,3﹣).
【点评】本题考查二次函数综合题、三角函数、勾股定理等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.
9.(2016•甘孜州)如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3).
(1)求抛物线的函数表达式;
(2)判断△BCM是否为直角三角形,并说明理由.
(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.
【分析】(1)用待定系数法求出抛物线解析式即可;
(2)由抛物线解析式确定出抛物线的顶点坐标和与x轴的交点坐标,用勾股定理的逆定理即可;
(3)根据题意判断出点N只能在x轴上方的抛物线上,由已知四边形的面积相等转化出S△ABN=S△BCM,然后求出三角形BCM的面积,再建立关于点N的坐标的方程求解即可.
【解答】解:(1)∵抛物线y=a(x+1)2﹣4与y轴相交于点C(0,﹣3).
∴﹣3=a﹣4,
∴a=1,
∴抛物线解析式为y=(x+1)2﹣4=x2+2x﹣3,
(2)△BCM是直角三角形
理由:由(1)有,抛物线解析式为y=(x+1)2﹣4,
∵顶点为M的抛物线y=a(x+1)2﹣4,
∴M(﹣1,﹣4),
由(1)抛物线解析式为y=x2+2x﹣3,
令y=0,
∴x2+2x﹣3=0,
∴x1=﹣3,x2=1,
∴A(1,0),B(﹣3,0),
∴BC2=9+9=18,CM2=1+1=2,BM2=4+14=20,
∴BC2+CM2=BM2,
∴△BCM是直角三角形,
(3)存在,N(﹣1+,)或N(﹣1﹣,),
∵以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等,且点M是抛物线的顶点,
∴①点N在x轴上方的抛物线上,
如图,
由(2)有△BCM是直角三角形,BC2=18,CM2=2,
∴BC=3,CM=,
∴S△BCM=BC×CM=×3×=3,
设N(m,n),
∵以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等,
∴S△ABN+S△ABC=S△BCM+S△ABC,
∴S△ABN=S△BCM=3,
∵A(1,0),B(﹣3,0),
∴AB=4,
∴S△ABN=×AB×n=×4×n=2n=3,
∴n=,
∵N在抛物线解析式为y=x2+2x﹣3的图象上,
∴m2+﹣3=,
∴m1=﹣1+,m2=﹣1﹣,
∴N(﹣1+,)或N(﹣1﹣,).
②如图2,
②点N在x轴下方的抛物线上,
∵点C在对称轴的右侧,
∴点N在对称轴右侧不存在,只有在对称轴的左侧,
过点M作MN∥BC,交抛物线于点N,
∵B(﹣3,0),C(0,﹣3),
∴直线BC解析式为y=﹣x﹣3,
设MN的解析式为y=﹣x+b
∵抛物线解析式为y=(x+1)2﹣4①,
∴M(﹣1,﹣4),
∴直线MN解析式为y=﹣x﹣5②,
联立①②得(舍),,
∴N(﹣2,﹣3),
即:N(﹣1+,)或N(﹣1﹣,)或N(﹣2,﹣3).
【点评】此题是二次函数综合题,主要考查了待定系数法求抛物线解析式,直角三角形的判断,图形面积的计算,解本题的关键是判断出△BCM是直角三角形,难点是要两个四边形面积相等,点N分在x轴上方的抛物线上和下方的抛物线上,用方程的思想解决问题是解决(3)的关键,也是初中阶段常用的方法.
10.(2016•临夏州)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.
(1)求此抛物线的解析式和直线AB的解析式;
(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?
(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.
【分析】(1)用待定系数法求出抛物线,直线解析式;
(2)分两种情况进行计算即可;
(3)确定出面积达到最大时,直线PC和抛物线相交于唯一点,从而确定出直线PC解析式为y=﹣x+,根据锐角三角函数求出BD,计算即可.
【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点,
∴,
∴,
∴y=﹣x2+2x+3,
设直线AB的解析式为y=kx+n,
∴,
∴,
∴y=﹣x+3;
(2)由运动得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,
∵△AEF为直角三角形,
∴①△AOB∽△AEF,
∴,
∴,
∴t=,
②△AOB∽△AFE,
∴,
∴,
∴t=1;
(3)如图,存在,
过点P作PC∥AB交y轴于C,
∵直线AB解析式为y=﹣x+3,
∴设直线PC解析式为y=﹣x+b,
联立,
∴﹣x+b=﹣x2+2x+3,
∴x2﹣3x+b﹣3=0
∴△=9﹣4(b﹣3)=0
∴b=,
∴BC=﹣3=,x=,
∴P(,).
过点B作BD⊥PC,
∴直线BD解析式为y=x+3,
∴BD=,
∴BD=,
∵AB=3
S最大=AB×BD=×3×=.
即:存在面积最大,最大是,此时点P(,).
【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,相似三角形的性质和判定,平行线的解析式的确定方法,互相垂直的直线解析式的确定方法,解本题的关键是确定出△PAB面积最大时点P的特点.
11.(2016•上海)如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.
(1)求这条抛物线的表达式;
(2)联结AB、BC、CD、DA,求四边形ABCD的面积;
(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.
【分析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;
(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;
(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.
【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,
∴C(0,﹣5),
∴OC=5.
∵OC=5OB,
∴OB=1,
又点B在x轴的负半轴上,
∴B(﹣1,0).
∵抛物线经过点A(4,﹣5)和点B(﹣1,0),
∴,解得,
∴这条抛物线的表达式为y=x2﹣4x﹣5.
(2)由y=x2﹣4x﹣5,得顶点D的坐标为(2,﹣9).
连接AC,
∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),
又S△ABC=×4×5=10,S△ACD=×4×4=8,
∴S四边形ABCD=S△ABC+S△ACD=18.
(3)过点C作CH⊥AB,垂足为点H.
∵S△ABC=×AB×CH=10,AB=5,
∴CH=2,
在RT△BCH中,∠BHC=90°,BC=,BH==3,
∴tan∠CBH==.
∵在RT△BOE中,∠BOE=90°,tan∠BEO=,
∵∠BEO=∠ABC,
∴,得EO=,
∴点E的坐标为(0,).
【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.
12.(2016•济宁)如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).
(1)求抛物线m的解析式;
(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;
(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.
【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;
(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;
(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.
【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上
∴配方得y=a(x﹣3)2﹣+1,则有﹣+1=0,解得a=
∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;
(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)
∴连接EB′交l于点P,如图所示
设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得
解得,
则函数解析式为y=﹣x+
把x=3代入解得y=,
∴点P坐标为(3,);
(3)∵y=﹣x+与x轴交于点D,
∴点D坐标为(7,0),
∵y=﹣x+与抛物线m的对称轴l交于点F,
∴点F坐标为(3,2),
求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,
设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,
设点Q的坐标为(a,),把点Q代入y=2x﹣14得
=﹣14
解得a1=9,a2=15.
∴点Q坐标为(9,4)或(15,16).
【点评】本题考查的知识点是二次函数性质、一次函数性质、轴对称性质,解题的关键是明确找线段和最小的点要通过轴对称性质找对称点,以线段FQ为直径的圆恰好经过点D则要转化为∠FDG=90°的条件来考虑.
13.(2016•温州)如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=.
(1)用含m的代数式表示BE的长.
(2)当m=时,判断点D是否落在抛物线上,并说明理由.
(3)若AG∥y轴,交OB于点F,交BD于点G.
①若△DOE与△BGF的面积相等,求m的值.
②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是 .
【分析】(1)根据A、C两点纵坐标相同,求出点A横坐标即可解决问题.
(2)求出点D坐标,然后判断即可.
(3)①首先根据EO=2FG,证明BG=2DE,列出方程即可解决问题.
②求出直线AE、BO的解析式,求出交点M的横坐标,列出方程即可解决问题.
【解答】解:(1)∵C(0,﹣3),AC⊥OC,
∴点A纵坐标为﹣3,
y=﹣3时,﹣3=x2﹣mx﹣3,解得x=0或m,
∴点A坐标(m,﹣3),
∴AC=m,
∴BE==.
(2)∵m=,
∴点A坐标(,﹣3),
∴直线OA为y=﹣x,
∴抛物线解析式为y=x2﹣x﹣3,
∴点B坐标(2,3),
∴点D纵坐标为3,
对于函数y=﹣x,当y=3时,x=﹣,
∴点D坐标(﹣,3).
∵对于函数y=x2﹣x﹣3,x=﹣时,y=3,
∴点D在落在抛物线上.
(3)①∵∠ACE=∠CEG=∠EGA=90°,
∴四边形ECAG是矩形,
∴EG=AC=BG,
∵FG∥OE,
∴OF=FB,∵EG=BG,
∴EO=2FG,
∵•DE•EO=•GB•GF,
∴BG=2DE,
∵DE∥AC,
∴==,
∵点B坐标(,﹣3),
∴OC=2OE,
∴3=2(﹣3),
∵m>0,
∴m=.
②∵A(m,﹣3),B(,﹣3),E(0,﹣3),
∴直线AE解析式为y=﹣2mx+﹣3,直线OB解析式为y=x,
由消去y得到﹣2mx+﹣3=x,解得x=,
∴点M横坐标为,
∵△AMF的面积=△BFG的面积,
∴•(+3)•(m﹣)=•m••(﹣3),
整理得到:4﹣=0,
∵m>0,
∴m=.
故答案为.
【点评】本题考查二次函数综合题、三角形面积问题、一次函数等知识,解题的关键是学会构建一次函数,通过方程组解决问题,学会用构建方程的思想思考问题,属于中考压轴题.
14.(2016•贵港)如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.
【分析】(1)把A、B两点的坐标代入,利用待定系数法可求得抛物线的解析式;
(2)当S△ABE=S△ABC时,可知E点和C点的纵坐标相同,可求得E点坐标;
(3)在△CAE中,过E作ED⊥AC于点D,可求得ED和AD的长度,设出点P坐标,过P作PQ⊥x轴于点Q,由条件可知△EDA∽△PQA,利用相似三角形的对应边可得到关于P点坐标的方程,可求得P点坐标.
【解答】解:
(1)把A、B两点坐标代入解析式可得,解得,
∴抛物线解析式为y=x2+x﹣5;
(2)在y=x2+x﹣5中,令x=0可得y=﹣5,
∴C(0,﹣5),
∵S△ABE=S△ABC,且E点在x轴下方,
∴E点纵坐标和C点纵坐标相同,
当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),
∴E点坐标为(﹣2,﹣5);
(3)假设存在满足条件的P点,其坐标为(m, m2+m﹣5),
如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,
则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,
在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,
由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,
∴AD=AC﹣DC=5﹣=4,
当∠BAP=∠CAE时,则△EDA∽△PQA,
∴=,即=,
∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),
当m2+m﹣5=(5+m)时,整理可得﹣﹣75=0,解得m=或m=﹣5(与A点重合,舍去),
当m2+m﹣5=﹣(5+m)时,整理可得+﹣45=0,解得m=或m=﹣5(与A点重合,舍去),
∴存在满足条件的点P,其横坐标为或.
【点评】本题主要考查二次函数的综合运用.涉及到的知识点有待定系数法、三角形的面积、相似三角形的判定和性质及分类讨论等.在(3)中利用∠BAP=∠CAE构造三角形相似是解题的关键.本题考查知识点较多,综合性很强,难度适中.
15.(2016•武汉)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.
(1)如图1,若P(1,﹣3),B(4,0).
①求该抛物线的解析式;
②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;
(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
【分析】(1)①根据待定系数法求函数解析式,可得答案;②根据平行线的判定,可得PD∥OB,根据函数值相等两点关于对称轴对称,可得D点坐标;
(2)根据待定系数法,可得E、F点的坐标,根据分式的性质,可得答案.
【解答】解:(1)①将P(1,﹣3),B(4,0)代入y=ax2+c,得
,解得,
抛物线的解析式为y=x2﹣;
②如图1,
当点D在OP左侧时,
由∠DPO=∠POB,得
DP∥OB,
D与P关于y轴对称,P(1,﹣3),
得D(﹣1,﹣3);
当点D在OP右侧时,延长PD交x轴于点G.
作PH⊥OB于点H,则OH=1,PH=3.
∵∠DPO=∠POB,
∴PG=OG.
设OG=x,则PG=x,HG=x﹣1.
在Rt△PGH中,由x2=(x﹣1)2+32,得x=5.
∴点G(5,0).
∴直线PG的解析式为y=x﹣
解方程组得,.
∵P(1,﹣3),
∴D(,﹣).
∴点D的坐标为(1,﹣3)或(,﹣).
(2)点P运动时,是定值,定值为2,理由如下:
作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.
∵PQ∥OF,
∴,
∴OF==﹣==amt+at2.
同理OE=﹣amt+at2.
∴OE+OF=2at2=﹣=2OC.
∴=2.
【点评】本题考查了二次函数综合题,①利用待定系数法求函数解析式;②利用函数值相等的点关于对称轴对称得出D点坐标是解题关键;(2)利用待定系数法求出E、F点坐标是解题关键.
16.(2016•黔西南州)如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点
(1)求m的值及C点坐标;
(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
(3)P为抛物线上一点,它关于直线BC的对称点为Q
①当四边形PBQC为菱形时,求点P的坐标;
②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.
【分析】(1)用待定系数法求出抛物线解析式;
(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;
(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;
②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.
【解答】解:(1)将B(4,0)代入y=﹣x2+3x+m,
解得,m=4,
∴二次函数解析式为y=﹣x2+3x+4,
令x=0,得y=4,
∴C(0,4),
(2)存在,
理由:∵B(4,0),C(0,4),
∴直线BC解析式为y=﹣x+4,
当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,
∴,
∴x2﹣4x+b=0,
∴△=14﹣4b=0,
∴b=4,
∴,
∴M(2,6),
(3)①如图,
∵点P在抛物线上,
∴设P(m,﹣m2++4),
当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,
∵B(4,0),C(0,4)
∴线段BC的垂直平分线的解析式为y=x,
∴m=﹣m2++4,
∴m=1±,
∴P(1+,1+)或P(1﹣,1﹣),
②如图,
设点P(t,﹣t2+3t+4),
过点P作y轴的平行线l,过点C作l的垂线,
∵点D在直线BC上,
∴D(t,﹣t+4),
∵PD=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,
BE+CF=4,
∴S四边形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=﹣4t2+16t,
∵0<t<4,
∴当t=2时,S四边形PBQC最大=16
【点评】此题是二次函数综合题,主要考查了待定系数法,极值的确定,对称性,面积的确定,解本题的关键是确定出△MBC面积最大时,点P的坐标.
17.(2016•重庆)如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.
(1)求直线AB和直线BC的解析式;
(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;
(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K是直角三角形时,求t的值.
【分析】(1)根据S△AMO:S四边形AONB=1:48,求出三角形相似的相似比为1:7,从而求出BN,继而求出点B的坐标,用待定系数法求出直线解析式.
(2)先判断出PE×PF最大时,PE×PD也最大,再求出PE×PF最大时G(5,),再简单的计算即可;
(3)由平移的特点及坐标系中,两点间的距离公式得A′C′2=8,A′K2=﹣+18,C′K2=﹣+26,最后分三种情况计算即可.
【解答】解:(1)∵点C是二次函数y=x2﹣2x+1图象的顶点,
∴C(2,﹣1),
∵PE⊥x轴,BN⊥x轴,
∴△MAO∽△MBN,
∵S△AMO:S四边形AONB=1:48,
∴S△AMO:S△BMN=1:49,
∴OA:BN=1:7,
∵OA=1
∴BN=7,
把y=7代入二次函数解析式y=x2﹣2x+1中,可得7=x2﹣2x+1,
∴x1=﹣2(舍),x2=6
∴B(6,7),
∵A的坐标为(0,1),
∴直线AB解析式为y=x+1,
∵C(2,﹣1),B(6,7),
∴直线BC解析式为y=2x﹣5.
(2)如图1,
设点P(x0,x0+1),
∴D(,x0+1),
∴PE=x0+1,PD=3﹣x0,
∵∠DPF固定不变,
∴PF:PD的值固定,
∴PE×PF最大时,PE×PD也最大,
PE×PD=(x0+1)(3﹣x0)=﹣x02+x0+3,
∴当x0=时,PE×PD最大,
即:PE×PF最大.此时G(5,)
∵△MNB是等腰直角三角形,
过B作x轴的平行线,
∴BH=B1H,
GH+BH的最小值转化为求GH+HB1的最小值,
∴当GH和HB1在一条直线上时,GH+HB1的值最小,
此时H(5,6),最小值为7﹣=
(3)令直线BC与x轴交于点I,
∴I(,0)
∴IN=,IN:BN=1:2,
∴沿直线BC平移时,横坐标平移m时,纵坐标则平移,平移后A′(m,1+),C′(2+m,﹣1+),
∴A′C′2=8,A′K2=﹣+18,C′K2=﹣+26,
当∠A′KC′=90°时,A′K2+KC′2=A′C′2,解得m=,此时t=m=2±;
当∠KC′A′=90°时,KC′2+A′C′2=A′K2,解得m=4,此时t=m=4;
当∠KA′C′=90°时,A′C′2+A′K2=KC′2,解得m=0,此时t=0.
【点评】此题是二次函数综合题,主要考查了相似三角形的性质,待定系数法求函数解析式,两点间的结论公式,解本题的关键是相似三角形的性质的运用.
18.(2016•新疆)如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.
(1)求抛物线的解析式;
(2)证明:△DBO∽△EBC;
(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.
【分析】(1)先求出点C的坐标,在由BO=OC=3AO,确定出点B,A的坐标,最后用待定系数法求出抛物线解析式;
(2)先求出点A,B,C,D,E的坐标,从而求出BC=3,BE=2,CE=,OD=1,OB=3,BD=,求出比值,得到得出结论;
(3)设出点P的坐标,表示出PB,PC,求出BC,分三种情况计算即可.
【解答】解:(1)∵抛物线y=ax2+bx﹣3,
∴c=﹣3,
∴C(0,﹣3),
∴OC=3,
∵BO=OC=3AO,
∴BO=3,AO=1,
∴B(3,0),A(﹣1,0),
∵该抛物线与x轴交于A、B两点,
∴,
∴,
∴抛物线解析式为y=x2﹣2x﹣3,
(2)由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴E(1,﹣4),
∵B(3,0),A(﹣1,0),C(0,﹣3),
∴BC=3,BE=2,CE=,
∵直线y=﹣x+1与y轴交于点D,
∴D(0,1),
∵B(3,0),
∴OD=1,OB=3,BD=,
∴,,,
∴,
∴△BCE∽△BDO,
(3)存在,
理由:设P(1,m),
∵B(3,0),C(0,﹣3),
∴BC=3,PB=,PC=,
∵△PBC是等腰三角形,
①当PB=PC时,
∴=,
∴m=﹣1,
∴P(1,﹣1),
②当PB=BC时,
∴3=,
∴m=±,
∴P(1,)或P(1,﹣),
③当PC=BC时,
∴3=,
∴m=﹣3±,
∴P(1,﹣3+)或P(1,﹣3﹣),
∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣)
【点评】此题是二次函数综合题,主要考查了点的坐标的确定方法,两点间的距离公式,待定系数法,等腰三角形的性质,相似三角形的判定,解本题的关键是判断△BCE∽△BDO.难点是分类.
19.(2016•临沂)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC是直角三角形;
(2)根据运动表示出OP=2t,CQ=10﹣t,判断出Rt△AOP≌Rt△ACQ,得到OP=CQ即可;
(3)分三种情况用平面坐标系内,两点间的距离公式计算即可,
【解答】解:(1)∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,
∴A(5,0),B(0,10),
∵抛物线过原点,
∴设抛物线解析式为y=ax2+bx,
∵抛物线过点B(0,10),C(8,4),
∴,
∴,
∴抛物线解析式为y=x2﹣x,
∵A(5,0),B(0,10),C(8,4),
∴AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,
∴AC2+BC2=AB2,
∴△ABC是直角三角形.
(2)如图1,
当P,Q运动t秒,即OP=2t,CQ=10﹣t时,
由(1)得,AC=OA,∠ACQ=∠AOP=90°,
在Rt△AOP和Rt△ACQ中,
,
∴Rt△AOP≌Rt△ACQ,
∴OP=CQ,
∴2t=10﹣t,
∴t=,
∴当运动时间为时,PA=QA;
(3)存在,
∵y=x2﹣x,
∴抛物线的对称轴为x=,
∵A(5,0),B(0,10),
∴AB=5
设点M(,m),
①若BM=BA时,
∴()2+(m﹣10)2=125,
∴m1=,m2=,
∴M1(,),M2(,),
②若AM=AB时,
∴()2+m2=125,
∴m3=,m4=﹣,
∴M3(,),M4(,﹣),
③若MA=MB时,
∴(﹣5)2+m2=()2+(10﹣m)2,
∴m=5,
∴M(,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,
∴点M的坐标为:M1(,),M2(,),M3(,),M4(,﹣),
【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,三角形的全等的性质和判定,等腰三角形的性质,解本题的关键是分情况讨论,也是本题的难点.
20.(2016•眉山)已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,
(1)求经过A、B、C三点的抛物线的解析式;
(2)在平面直角坐标系xOy中是否存在一点P,使得以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.
【分析】(1)设抛物线的解析式为y=ax2+bx+c,把A,B,C三点坐标代入求出a,b,c的值,即可确定出所求抛物线解析式;
(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:根据OA,OB,OC的长,利用勾股定理求出BC与AC的长相等,只有当BP与AC平行且相等时,四边形ACBP为菱形,可得出BP的长,由OB的长确定出P的纵坐标,确定出P坐标,当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形;
(3)利用待定系数法确定出直线PA解析式,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,
当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,联立直线AP与抛物线解析式,求出当|PM﹣AM|的最大值时M坐标,确定出|PM﹣AM|的最大值即可.
【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,
∵A(1,0)、B(0,3)、C(﹣4,0),
∴,
解得:a=﹣,b=﹣,c=3,
∴经过A、B、C三点的抛物线的解析式为y=﹣x2﹣x+3;
(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:
∵OB=3,OC=4,OA=1,
∴BC=AC=5,
当BP平行且等于AC时,四边形ACBP为菱形,
∴BP=AC=5,且点P到x轴的距离等于OB,
∴点P的坐标为(5,3),
当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,
则当点P的坐标为(5,3)时,以点A、B、C、P为顶点的四边形为菱形;
(3)设直线PA的解析式为y=kx+b(k≠0),
∵A(1,0),P(5,3),
∴,
解得:k=,b=﹣,
∴直线PA的解析式为y=x﹣,
当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,
当点M与点P、A在同一直线上时,|PM﹣AM|=PA,
∴当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,
解方程组,得或,
∴点M的坐标为(1,0)或(﹣5,﹣)时,|PM﹣AM|的值最大,此时|PM﹣AM|的最大值为5.
【点评】此题属于二次函数综合题,涉及的知识有:二次函数的性质,待定系数法确定抛物线解析式、一次函数解析式,菱形的判定,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键..
21.(2016•铜仁市)如图,抛物线y=ax2+bx﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴交于点C.
(1)求抛物线的解析式及顶点D的坐标;
(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;
(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.
【分析】(1)利用待定系数法求出抛物线解析式;
(2)确定出当△ACP的周长最小时,点P就是BC和对称轴的交点,利用两点间的距离公式计算即可?
(3)作出辅助线,利用tan∠MDN=2或,建立关于点N的横坐标的方程,求出即可.
【解答】解:(1)∵抛物线y=ax2+bx﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,
∴
∴,
∴抛物线解析式为y=x2﹣x﹣1=(x﹣)2﹣,
∴抛物线的顶点坐标为(,﹣),
(2)如图1,
连接BC与抛物线对称轴的交点就是点P,连接AC,AP,
∵点A,B关于抛物线对称轴对称,
∴PA=PB,
∵B(2,0),C(0,﹣1),
∴直线BC解析式为y=x﹣1,
∵点P在抛物线对称轴上,
∴点P的横坐标为,
∴点P的纵坐标为﹣,
∴P(,﹣),
(3)如图2,
过点作NF⊥DM,
∵B(2,0),C(0,﹣1),
∴OB=2,OC=1,
∴tan∠OBC==,tan∠OCB==2,
设点N(m, m2﹣m﹣1),
∴FN=|m﹣|,FD=|m2﹣m﹣1+|=|m2﹣m+|,
∵Rt△DNM与Rt△BOC相似,
∴∠MDN=∠OBC,或∠MDN=∠OCB,
①当∠MDN=∠OBC时,
∴tan∠MDN==,
∴=
∴m=(舍)或m=或m=﹣,
∴N(,)或(﹣,),
②当∠MDN=∠OCB时,
∴tan∠MDN==2,
∴=2,
∴m=(舍)或m=或m=﹣,
∴N(,﹣)或(﹣,﹣);
∴符合条件的点N的坐标(,)或(﹣,)或(,﹣)或(﹣,﹣).
【点评】此题是二次函数综合题,主要考查了待定系数法,抛物线的对称性,三角函数,三角形周长的计算,绝对值方程,过点N作抛物线对称轴的垂线是解本题的关键也是难点.
22.(2016•聊城)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.
(1)求出二次函数的表达式以及点D的坐标;
(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O,求此时Rt△A1O与矩形OCDE重叠部分的图形的面积;
(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2,Rt△A2O2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.
【分析】(1)用待定系数法求抛物线解析式;
(2)由GH∥A1O1,求出GH=1,再求出FH,S重叠部分=S△A1O﹣S△FGH计算即可;
(3)分两种情况①直接用面积公式计算,②用面积差求出即可.
【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).
∴设抛物线的解析式为y=a(x+3)(x﹣9),
∵C(0,4)在抛物线上,
∴4=﹣,
∴a=﹣,
∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,
∵CD垂直于y轴,C(0,4)
∴﹣x2+x+4=4,
∴x=6,
∴D(6,4),
(2)如图1,
∵点F是抛物线y=﹣x2+x+4的顶点,
∴F(3,),
∴FH=,
∵GH∥A1O1,
∴,
∴,
∴GH=1,
∵Rt△A1O与矩形OCDE重叠部分是梯形A1O1HG,
∴S重叠部分=S△A1O﹣S△FGH=A1O1×O﹣GH×FH=×3×4﹣×1×=.
(3)①当0<t≤3时,如图2,
∵C2O2∥DE,
∴,
∴,
∴O=t,
∴S=S△OO=OO2×O=t×t=t2,
②当3<t≤6时,如图3,
∵C2H∥OC,
∴,
∴,
∴C2H=(6﹣t),
∴S=S四边形A2O2HG=S△A2O2﹣S△C2GH
=OA×OC﹣C2H×(6﹣t)
=×3×4﹣×(6﹣t)(6﹣t)
=﹣t2+4t﹣6
∴当0<t≤3时,S=t2,当3<t≤6时,S=﹣t2+4t﹣6.
【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,平行线分线段成比例定理,三角形的面积计算,解本题的关键是画出图形.
23.(2016•湖北襄阳)如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.
(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;
(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?
【分析】(1)分别令y=0和x=0代入y=﹣x+3即可求出B和C的坐标,然后设抛物线的交点式为y=a(x+2)(x﹣4),最后把C的坐标代入抛物线解析式即可求出a的值和顶点D的坐标;
(2)若四边形DEFP为平行四边形时,则DP∥BC,设直线DP的解析式为y=mx+n,则m=﹣,求出直线DP的解析式后,联立抛物线解析式和直线DP的解析式即可求出P的坐标;
(3)由题意可知,0≤t≤6,若△QMN为等腰直角三角形,则共有三种情况,①∠NMQ=90°;②∠MNQ=90°;③∠NQM=90°.
【解答】解:(1)令x=0代入y=﹣x+3
∴y=3,
∴C(0,3),
令y=0代入y=﹣x+3
∴x=4,
∴B(4,0),
设抛物线的解析式为:y=a(x+2)(x﹣4),
把C(0,3)代入y=a(x+2)(x﹣4),
∴a=﹣,
∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,
∴顶点D的坐标为(1,);
(2)当DP∥BC时,
此时四边形DEFP是平行四边形,
设直线DP的解析式为y=mx+n,
∵直线BC的解析式为:y=﹣x+3,
∴m=﹣,
∴y=﹣x+n,
把D(1,)代入y=﹣x+n,
∴n=,
∴直线DP的解析式为y=﹣x+,
∴联立,
解得:x=3或x=1(舍去),
∴把x=3代入y=﹣x+,
y=,
∴P的坐标为(3,);
(3)由题意可知:0≤t≤6,
设直线AC的解析式为:y=m1x+n1,
把A(﹣2,0)和C(0,3)代入y=m1x+n1,
得:,
∴解得,
∴直线AC的解析式为:y=x+3,
由题意知:QB=t,
如图1,当∠NMQ=90°,
∴OQ=4﹣t,
令x=4﹣t代入y=﹣x+3,
∴y=t,
∴M(4﹣t, t),
∵MN∥x轴,
∴N的纵坐标为t,
把y=t代入y=x+3,
∴x=t﹣2,
∴N(t﹣2, t),
∴MN=(4﹣t)﹣(﹣2)=6﹣t,
∵MQ∥OC,
∴△BQM∽△BOC,
∴,
∴MQ=t,
当MN=MQ时,
∴6﹣t=t,
∴t=,
此时QB=,符合题意,
如图2,当∠QNM=90°时,
∵QB=t,
∴点Q的坐标为(4﹣t,0)
∴令x=4﹣t代入y=x+3,
∴y=9﹣t,
∴N(4﹣t,9﹣t),
∵MN∥x轴,
∴点M的纵坐标为9﹣t,
∴令y=9﹣t代入y=﹣x+3,
∴x=2t﹣8,
∴M(2t﹣8,9﹣t),
∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,
∵NQ∥OC,
∴△AQN∽△AOC,
∴=,
∴NQ=9﹣t,
当NQ=MN时,
∴9﹣t=3t﹣12,
∴t=,
∴此时QB=,符合题意
如图3,当∠NQM=90°,
过点Q作QE⊥MN于点E,
过点M作MF⊥x轴于点F,
设QE=a,
令y=a代入y=﹣x+3,
∴x=4﹣,
∴M(4﹣a,a),
令y=a代入y=x+3,
∴x=﹣2,
∴N(﹣2,a),
∴MN=(4﹣a)﹣(a﹣2)=6﹣,
当MN=2QE时,
∴6﹣=,
∴a=,
∴MF=QE=,
∵MF∥OC,
∴△BMF∽△BCO,
∴=,
∴BF=2,
∴QB=QF+BF=+2=,
∴t=,此情况符合题意,
综上所述,当△QMN为等腰直角三角形时,此时t=或或.
【点评】本题考查二次函数的综合问题,涉及待定系数法求一次函数和二次函数的解析式,相似三角形判定与性质,等腰直角三角形的性质知识,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
24.(2016•本溪)如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的倍.
①求点P的坐标;
②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;
(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.
【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;
(2)设出点P的坐标,①用△POA的面积是△POB面积的倍,建立方程求解即可;②利用对称性找到最小线段,用两点间距离公式求解即可;
(3)分OB为边和为对角线两种情况进行求解,①当OB为平行四边形的边时,用MN∥OB,表示和用MN=OB,建立方程求解;
②当OB为对角线时,OB与MN互相平分,交点为H,设出M,N坐标用OH=BH,MH=NH,建立方程组求解即可.
【解答】解:(1)∵直线y=﹣x+1与x轴交于点A,与y轴交于点B,
∴A(2,0),B(0,1),
∵抛物线y=﹣x2+bx+c经过A、B两点,
∴,∴
∴抛物线解析式为y=﹣x2+x+1,
(2)①由(1)知,A(2,0),B(0,1),
∴OA=2,OB=1,
由(1)知,抛物线解析式为y=﹣x2+x+1,
∵点P是第一象限抛物线上的一点,
∴设P(a,﹣a2+a+1),((a>0,﹣a2+a+1>0),
∴S△POA=OA×Py=×2×(﹣a2+a+1)=﹣a2+a+1
S△POB=OB×Px=×1×a=a
∵△POA的面积是△POB面积的倍.
∴﹣a2+a+1=×a,
∴a=或a=﹣(舍)
∴P(,1);
②如图1,
由(1)知,抛物线解析式为y=﹣x2+x+1,
∴抛物线的对称轴为x=,抛物线与x轴的另一交点为C(﹣,0),
∵点A与点C关于对称轴对称,
∴QP+QA的最小值就是PC=;
(3)①当OB为平行四边形的边时,MN=OB=1,MN∥OB,
∵点N在直线AB上,
∴设M(m,﹣m+1),
∴N(m,﹣m2+m+1),
∴MN=|﹣m2+m+1﹣(﹣m+1)|=|m2﹣|=1,
Ⅰ、m2﹣=1,
解得,m=1±,
∴M(1+,(1﹣))或M(1﹣,(1+))
Ⅱ、m2﹣=﹣1,
解得,m=1,
∴M(1,);
②当OB为对角线时,OB与MN互相平分,交点为H,
∴OH=BH,MH=NH,
∵B(0,1),O(0,0),
∴H(0,),
设M(n,﹣n+1),N(d,﹣d2+d+1)
∴,
∴或,
∴M(﹣(1+),(3+))或M(﹣(1﹣),(3﹣));
即:满足条件的点M的坐标(1+,(1﹣))或(1﹣,﹣(1+))或(1,)或M(﹣(1+),(3+))或M(﹣(1﹣),(3﹣));
【点评】此题是二次函数综合题,主要考查了待定系数法,三角形的面积,平行四边形的性质,对称性,解本题的关键是求抛物线解析式,确定最小值和点M坐标时,分类讨论是解本题的难点.
25.(2016•徐州)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D
(1)求二次函数的表达式及其顶点坐标;
(2)若P为y轴上的一个动点,连接PD,则PB+PD的最小值为 ;
(3)M(x,t)为抛物线对称轴上一动点
①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有 5 个;
②连接MA,MB,若∠AMB不小于60°,求t的取值范围.
【分析】(1)利用待定系数法转化为解方程组解决问题.
(2)如图1中,连接AB,作DH⊥AB于H,交OB于P,此时PB+PD最小.最小值就是线段DH,求出DH即可.
(3)①先在对称轴上寻找满足△ABM是等腰三角形的点M,由此即可解决问题.
②作AB的中垂线与y轴交于点E,连接EA,则∠AEB=120°,以E为圆心,EB为半径作圆,与抛物线对称轴交于点F、G.则∠AFB=∠AGB=60°,从而线段FG上的点满足题意,求出F、G的坐标即可解决问题.
【解答】解:(1)由题意解得,
∴抛物线解析式为y=x2﹣x﹣,
∵y=x2﹣x﹣=(x﹣)2﹣,
∴顶点坐标(,﹣).
(2)如图1中,连接AB,作DH⊥AB于H,交OB于P,
此时PB+PD最小.
理由:∵OA=1,OB=,
∴tan∠ABO==,
∴∠ABO=30°,
∴PH=PB,
∴PB+OD=PH+PD=DH,
∴此时PB+PD最短(垂线段最短).
在RT△ADH中,∵∠AHD=90°,AD=,∠HAD=60°,
∴sin60°=,
∴DH=,
∴PB+PD的最小值为.
故答案为.
(3)①以A为圆心AB为半径画弧与对称轴有两个交点,
以B为圆心AB为半径画弧与对称轴也有两个交点,
线段AB的垂直平分线与对称轴有一个交点,
所以满足条件的点M有5个,即满足条件的点N也有5个,
故答案为5.
②如图,RT△AOB中,∵tan∠ABO==,
∴∠ABO=30°,
作AB的中垂线与y轴交于点E,连接EA,则∠AEB=120°,
以E为圆心,EB为半径作圆,与抛物线对称轴交于点F、G.
则∠AFB=∠AGB=60°,从而线段FG上的点满足题意,
∵EB==,
∴OE=OB﹣EB=,
∵F(,t),EF2=EB2,
∴()2+(t+)2=()2,
解得t=或,
故F(,),G(,),
∴t的取值范围≤t≤
【点评】本题考查二次函数综合题、锐角三角函数、最短问题、圆等知识,解题的关键是掌握待定系数法确定函数解析式,学会利用垂线段最短解决实际问题中的最短问题,学会添加辅助线,构造圆解决角度问题,属于中考压轴题.
26.(2016•曲靖)如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.
(1)求抛物线的解析式;
(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;
(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.
【分析】(1)由点C的坐标以及tan∠OAC=可得出点A的坐标,结合点A、C的坐标利用待定系数法即可求出抛物线的解析式;
(2)设直线AC的解析式为y=kx+b,由点A、C的解析式利用待定系数法即可求出直线AC的解析式,设N(x,0)(﹣4<x<0),可找出H、P的坐标,由此即可得出PH关于x的解析式,利用配方法即二次函数的性质即可解决最值问题;
(3)过点M作MK⊥y轴于点K,交对称轴于点G,根据角的计算依据正方形的性质即可得出△MCK≌△MEG(AAS),进而得出MG=CK.设出点M的坐标利用正方形的性质即可得出点G、K的坐标,由正方形的性质即可得出关于x的含绝对值符号的一元二次方程,解方程即可求出x值,将其代入抛物线解析式中即可求出点M的坐标.
【解答】解:(1)∵C(0,3),
∴OC=3,
∵tan∠OAC=,
∴OA=4,
∴A(﹣4,0).
把A(﹣4,0)、C(0,3)代入y=ax2+2ax+c中,
得,解得:,
∴抛物线的解析式为y=﹣x2﹣x+3.
(2)设直线AC的解析式为y=kx+b,
把A(﹣4,0)、C(0,3)代入y=kx+b中,
得:,解得:,
∴直线AC的解析式为y=x+3.
设N(x,0)(﹣4<x<0),则H(x, x+3),P(x,﹣x2﹣x+3),
∴PH=﹣x2﹣x+3﹣(x+3)=﹣x2﹣x=﹣(x+2)2+,
∵﹣<0,
∴PH有最大值,
当x=﹣2时,PH取最大值,最大值为.
(3)过点M作MK⊥y轴于点K,交对称轴于点G,则∠MGE=∠MKC=90°,
∴∠MEG+∠EMG=90°,
∵四边形CMEF是正方形,
∴EM=MC,∠MEC=90°,
∴∠EMG+∠CMK=90°,
∴∠MEG=∠CMK.
在△MCK和△MEG中,,
∴△MCK≌△MEG(AAS),
∴MG=CK.
由抛物线的对称轴为x=﹣1,设M(x,﹣x2﹣x+3),则G(﹣1,﹣x2﹣x+3),K(0,﹣x2﹣x+3),
∴MG=|x+1|,CK=|﹣x2﹣x+3﹣3|=|﹣x2﹣x|=|x2+x|,
∴|x+1|=|x2+x|,
∴x2+x=±(x+1),
解得:x1=﹣4,x2=﹣,x3=﹣,x4=2,
代入抛物线解析式得:y1=0,y2=,y3=,y4=0,
∴点M的坐标是(﹣4,0),(﹣,),(﹣,)或(2,0).
【点评】本题考查了待定系数法求函数解析式、二次函数的性质、正方形的性质以及全等三角形的判定与性质,解题的关键是:(1)利用待定系数法求出抛物线解析式;(2)根据二次函数的性质解决最值问题;(3)根据正方形的性质得出关于x的含绝对值符号的一元二次方程.本题属于中档题,难度不大,解决该题型题目时,根据正方形的性质找出关于x的含绝对值符号的一元二次方程,解方程求出点的横坐标是关键.
27.(2016•张家界)已知抛物线y=a(x﹣1)2﹣3(a≠0)的图象与y轴交于点A(0,﹣2),顶点为B.
(1)试确定a的值,并写出B点的坐标;
(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;
(3)试在x轴上求一点P,使得△PAB的周长取最小值;
(4)若将抛物线平移m(m≠0)个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.
【分析】(1)把A(0,﹣2)代入y=a(x﹣1)2﹣3即可得到结论;
(2)设一次函数的解析式为y=kx+b将A、B两点的坐标代入解析式解方程组即可得到结论;
(3)连接EB交x轴于点P,则P点即为所求,求出过E、B点的一次函数解析式为y=﹣5x+2,即可得到结论;
(4)如图2,设抛物线向右平移m(若m>0表示向右平移,若m<0表示向左平移)个单位,得到新的抛物线的顶点C(1+m,﹣3),解方程组得到两抛物线的交点D(),解一元二次方程得到m=2或m=﹣3,即可得到结论.
【解答】解:(1)把A(0,﹣2)代入y=a(x﹣1)2﹣3得﹣2=a(0﹣1)2﹣3,解得:a=1,
∵顶点为B,
∴B(1,﹣3);
(2)设一次函数的解析式为y=kx+b
将A、B两点的坐标代入解析式求得:,
∴k=﹣1,b=﹣2,
∴写出一次函数的解析式为y=﹣x﹣2,;
(3)A点关于x轴的对称点记作E,则E(0,2),
如图1,连接EB交x轴于点P,则P点即为所求,
理由:在△PAB中,AB为定值,
只需PA+PB取最小值即可,
而PA=PE,从而只需PE+PB取最小值即可,
∵两点之间线段最短,
∴PE+PB≤EB,
∴E、P、B三点在同一条直线上时,取得最小值.
由于过E、B点的一次函数解析式为y=﹣5x+2,
当y=0时,x=,
∴P(,0);
(4)如图2,设抛物线向右平移m(若m>0表示向右平移,若m<0表示向左平移)个单位,
则所得新的抛物线的顶点C(1+m,﹣3),
∴新抛物线解析式为 y=(x﹣1﹣m)2﹣3
解得,
∴两抛物线的交点D(),
∴经过O、C的一次函数解析式是y=﹣x,若 O、C、D在同一直线上,
则 有,
化简整理得m3+m2﹣=0,
∵m≠0,
∴m2+m﹣6=0,解得:m=2或m=﹣3,
∴O、C、D三点能够在同一直线上,
此时m=2或m=﹣3.
即抛物线向右平移2个单位,或者向左平移3个单位,均满足题目要求.
【点评】本题考查了待定系数法求函数的解析式,二次函数的性质,平移的性质,解一元二次方程,轴对称﹣最短距离问题,熟练掌握二次函数的性质是解题的关键.
28.(2016•吉林)如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点
(1)当m=2时,a= ﹣ ,当m=3时,a= ﹣ ;
(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;
(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当△APQ为等腰直角三角形时,a和n的关系式为 a=﹣ ;
(4)利用(2)(3)中的结论,求△AOB与△APQ的面积比.
【分析】(1)由△AOB为等边三角形,AB=,得出点A,B坐标,再由点A,B,O在抛物线上建立方程组,得出结论,最后代m=2,m=3,求值即可;
(2)同(1)的方法得出结论
(3)由△APQ为等腰直角三角形,PQ的长度为2n,设A(e,d+n),∴P(e﹣n,d),Q(e+n,d),建立方程组求解即可;
(4)由(2)(3)的结论得到m=n,再根据面积公式列出式子,代入化简即可.
【解答】解:(1)如图1,
∵点B在x轴正半轴上,OB的长度为,
∴B(,0),
∵以OB为边向上作等边三角形AOB,
∴AM=m,OM=m,
∴A(m, m),
∵抛物线l:y=ax2+bx+c经过点O,A,B三点
∴,
∴
当m=2时,a=﹣,
当m=3时,a=﹣,
故答案为:﹣,﹣;
(2)a=﹣
理由:如图1,∵点B在x轴正半轴上,OB的长度为,
∴B(,0),
∵以OB为边向上作等边三角形AOB,
∴AM=m,OM=m,
∴A(m, m),
∵抛物线l:y=ax2+bx+c经过点O,A,B三点
∴,
∴
∴a=﹣,
(3)如图2,
∵△APQ为等腰直角三角形,PQ的长度为2n,
设A(e,d+n),∴P(e﹣n,d),Q(e+n,d),
∵P,Q,A,O在抛物线l:y=ax2+bx+c上,
∴,
∴,
①﹣②化简得,2ae﹣an+b=1④,
①﹣③化简得,﹣2ae﹣an﹣b=1⑤,
④+⑤化简得,an=﹣1,
∴a=﹣
故答案为a=﹣,
(4)∵OB的长度为,AM=m,
∴S△AOB=OB×AM=××m=m2,
由(3)有,AN=n
∵PQ的长度为2n,
∴S△APQ=PQ×AN=××n=n2,
由(2)(3)有,a=﹣,a=﹣,
∴﹣=﹣,
∴m=n,
∴===,
∴△AOB与△APQ的面积比为3:1.
【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,等腰直角三角形的性质,方程组的解法,三角形面积的计算,解本题的关键是根据方程组找a与m,及a与n的关系.也是解本题的难点.
29.(2016•营口)如图①,已知△ABC的三个顶点坐标分别为A(﹣1,0)、B(3,0)、C(0,3),直线BE交y轴正半轴于点E.
(1)求经过A、B、C三点的抛物线解析式及顶点D的坐标;
(2)连接BD、CD,设∠DBO=α,∠EBO=β,若tan (α﹣β)=1,求点E的坐标;
(3)如图②,在(2)的条件下,动点M从点C出发以每秒个单位的速度在直线BC上移动(不考虑点M与点C、B重合的情况),点N为抛物线上一点,设点M移动的时间为t秒,在点M移动的过程中,以E、C、M、N四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的t值及点M的个数;若不能,请说明理由.
【分析】(1)用待定系数法求出求出抛物线解析式,再配成顶点式,求出顶点坐标;
(2)先求出∠DOE=45°,再构造出等腰直角三角形,由两腰相等建立方程求出点E的坐标;
(3)分两种情况讨论计算①CE为平行四边形的边,用MN=CE建立方程求出点M坐标,从而求出时间t,
②利用平行四边形的对角线互相平分,借助中点坐标建立方程组求出点M坐标即可.
【解答】解:(1)经过A(﹣1,0)、B(3,0)、C(0,3)三点的抛物线,
∴设抛物线解析式为y=a(x+1)(x﹣3),
∵点C(0,3)在抛物线上,
∴3=﹣,
∴a=﹣1
∴抛物线解析式为y=﹣(x+1)(x﹣3)=﹣(x﹣1)2+4,
∴抛物线的顶点坐标为D(1,4),
(2)∵tan (α﹣β)=1,
∴α﹣β=45°,
∵∠DBO=α,∠EBO=β,
∴∠DOE=45°,
如图1,
过点E作EF⊥BD于F,
∴EF=BF,
∵B(3,0),D(1,4),
∴直线BD解析式为y=﹣2x+6①,
设点E(0,b),
∵EF⊥BD,
∴直线EF解析式为y=x+b②,
联立①②解方程组得,x=,y=(2b+3),
∴F(,(2b+3)),
∴EF2=[(6﹣B)]2+[(2b+3)﹣b]2=(6﹣b)2,FB2=[﹣3]2+[(2b+3)]2=[(2b+3)]2,
∵EF=FB,
∴EF2=FB2,
∴(6﹣b)2=[(2b+3)]2,
∴b=﹣9(舍)或b=1,
∴E(0,1),
(3)能,
理由:∵B(3,0),C(0,3),
∴直线BC解析式为y=﹣x+3,
设点M(m,﹣m+3),
∵E、C、M、N四个点为顶点的四边形为平行四边形,
∴分CE为边和CE为对角线进行计算,
①如图2,
当CE是平行四边形的边时,MN∥CE,MN=CE,
过M作MN∥CE交抛物线于N,
∵点N在抛物线上,
∴N(m,﹣m2++3),
∴MN=|﹣m2++3﹣(﹣m+3)|=|m2﹣|,
∵C(0,3),E(0,1),
∴CE=2,
∵MN=CE,
∴|m2﹣|=2,
∴m=或m=1或m=2,
∴M(,)或(,)或(1,2)或(2,1);
∵C(0,3)
当M(,)时,CM=,
∴t==,
当M(,)时,
同理:t=,
当M(1,2)时,CM=,
∴t=,
当M(2,1)时,CM=2,
∴t=2=2,
②当CE是平行四边形的对角线时,MN与CE互相平分,
∵C(0,3),E(0,1),
∴线段CE的中点坐标为(0,2),
∵M(m,﹣m+3),
∵点N在抛物线y=﹣x2+2x+3上,
设点N(n,﹣n2+2n+3),
利用中点坐标得,, =2,
∴或,
∴M(﹣,)或(﹣,),
当M(﹣,)时,CM=×,
∴t=
当M(﹣,)时,CM=×,
∴t=;
即:满足条件的t的值为或或1或2.点M共有6个.
【点评】此题是二次函数综合题,主要考查了待定系数法,配方法,构造直角三角形,两点间的距离公式,平行四边形的性质,中点坐标,绝对值方程,构造直角三角形是解本题的关键,是一道中上难度的中考常考题,计算量较大.
30.(2016•扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.
(1)求这个二次函数的表达式;
(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;
(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.
【分析】(1)利用待定系数法即可解决问题.
(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.
(3)设T(m,m2﹣),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣=﹣m+b,b=m2﹣+,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.
【解答】解:(1)∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,
则有解得
∴二次函数y=x2﹣2x,
(2)由(1)得,B(1,﹣1),
∵A(﹣1,3),
∴直线AB解析式为y=﹣2x+1,AB=2,
设点Q(m,0),P(n,n2﹣2n)
∵以A、B、P、Q为顶点的四边形是平行四边形,
①当AB为对角线时,根据中点坐标公式得,则有,解得或
∴P(1+,2)和(1﹣,2)
②当AB为边时,根据中点坐标公式得解得或
不用注册,免费下载!