当前位置:首页 > 九年级 > 数学

海南九年级单元测试第23章旋转 数学试卷B

试卷简介

这份试卷是针对九年级学生的数学测试题,专注于旋转相关的知识点。整套试卷包含了选择题、填空题、作图题和解答题,旨在考察学生对于旋转的基本概念、旋转中心、旋转角以及旋转后图形的性质的理解。题目难度适中,既有基础概念的考查,也有较为复杂的综合应用。

所涉及的知识点

本试卷主要涵盖了旋转的基本概念、旋转中心、旋转角及其相关性质,重点在于理解旋转后图形的不变性和旋转对称性。

九年级数学第二十三章旋转测试题(B)

45分钟 100分

一、选择题(每小题分,共分)

1.如果两个图形可通过旋转而相互得到,则下列说法中正确的有( ).

①对应点连线的中垂线必经过旋转中心.

②这两个图形大小、形状不变.

③对应线段一定相等且平行.

④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.

A.1个 B.2个 C.3个 D.4个

2.如图11-7,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG可以看成是把菱形ABCD以A为中心( ).

A.顺时针旋转60°得到

B.顺时针旋转120°得到

C.逆时针旋转60°得到

D.逆时针旋转120°得到

3.如图11-8,C是线段BD上一点,分别以BC、CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的三角形对数有( ).

A.1对 B.2对 C.3对 D.4对

4.如图11-9,△ABC中,AD是∠BAC内的一条射线,BE⊥AD,且△CHM可由△BEM旋转而得,则下列结论中错误的是( ).

A.M是BC的中点 B.

C.CF⊥AD D.FM⊥BC

5.如图11-10,O是锐角三角形ABC内一点,∠AOB=∠BOC=∠COA=120°,P是△ABC内不同于O的另一点;△A′BO′、△A′BP′分别由△AOB、△APB旋转而得,旋转角都为60°,则下列结论中正确的有( ).

①△O′BO为等边三角形,且A′、O′、O、C在一条直线上.

②A′O′+O′O=AO+BO.

③A′P′+P′P=PA+PB.

④PA+PB+PC>AO+BO+CO.

A.1个 B.2个 C.3个 D.4个

6.如图11-11,有四个图案,它们绕中心旋转一定的角度后,都能和原来的图案相互重合,其中有一个图案与其余三个图案旋转的角度不同,它是( ).

7.把26个英文字母按规律分成5组,现在还有5个字母D、M、Q、X、Z,请你按原规

律补上,其顺序依次为( )

① F R P J L G ( ) ② H I O ( )

③ N S ( ) ④ B C K E ( )

⑤ V A T Y W U ( )

A.Q X Z M D B.D M Q Z X

C.Z X M D Q D.Q X Z D M

8.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,

那么她所旋转的牌从左起是( )

A.第一张、第二张 B.第二张、第三张

C.第三张、第四张 D.第四张、第一张

(1) (2)

9.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( ).

(A) (B) (C) (D)

10.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )

(A) (B) (C) (D)

二、填空题(每小题分,共分)

11.如图11-1所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=_____________.

12.如图11-3,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA_______PB+PC(填“>”、“<”或“=”).

13.如图11-4,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=_____________.

14.如图11-5,O是等边△ABC内一点,将△AOB绕B点逆时针旋转,使得B、O两点的对应点分别为C、D,则旋转角为_____________,图中除△ABC外,还有等边三形是_____________.

15.如图11-6,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有_____________.

三、作图题

16.如图11-13,将图形绕O点按顺时针方向旋转45°,作出旋转后的图形.

四、解答题

17.如图11-14,△ABC、△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得到?

18.如图,△ABC是等腰三角形,∠BAC=36°,D是BC上一点,

△ABD经过旋转后到达△ACE的位置,

⑴旋转中心是哪一点?

⑵旋转了多少度?

⑶如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?

19.如图所示,△ABP是由△ACE绕A点旋转得到的,那么△ABP与△ACE是什么关系?若∠BAP=40°,∠B=30°,∠PAC=20°,求旋转角及∠CAE、∠E、∠BAE的度数。

20.如图,四边形ABCD的∠BAD=∠C=90º,AB=AD,AE⊥BC于E,旋转后能与重合。

(1)旋转中心是哪一点?

(2)旋转了多少度?

(3)若AE=5㎝,求四边形AECF的面积。

21.如图11-19所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.

图11-19

22.如图11-17所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.

23.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.

(1) 如图1, 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;

(2) 若将正方形AEFG绕点A按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.

第二十三章旋转(B)

一、选择题

1.C 2.D 3.C 4.D 5.D 6.A 7.D 8.A 9.D 10.C

二、填空题

11.60° 12.< 13.45° 14.60°;△AOD 15.△CPS和△EPQ

三、作图题

16.略。

四、解答题

17.△ABD与△ACE。

18.(1)A点;(2)60°;(3)AC的中点。

19.旋转角为60°,∠CAE=40°,∠E=110°,∠BAE=110°。

20.(1)A点;(2)旋转了90度;(3)由旋转的性质可知,四边形AECF是正方形,所以四边形AECF的面积为2。

21.方法一:可看作整个花瓣的六分之一部分,图案为绕中心O依次旋转60°、120°、180°、240°、300°而得到整个图案.

方法二:可看作是绕中心O依次旋转60°、120°得到整个图案的.

方法三:可看作整个花瓣的一半绕中心O旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的.

22.解法一:连接OA、OB、OC即可.如图中所示.

解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、OD2即得,如图乙所示.

解法三:在解法二中,用相同的曲线连接OD OD1 OD2 即得如图丙所示

23.(1)不相等,用图2即可说明;

(2)BE=DG。理由:连接BE,在△ADG和△ABE中,∵AD=AB,∠∠DAG=∠BAE,AG=AE,∴ADG≌ABE(SAS),∴BE=DG。

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:46921 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握