北师大版初中数学九年级(上) 第六章反比例函数
分节练习及本章复习(带答案)
第1节 反比例函数
1、【基础题】下列函数中是反比例函数的有 _________ (填序号). ★★★
①; ②; ③; ④; ⑤; ⑥; ⑦(为常数,)
2、【基础题】请写出下列各题中变量与的关系,并判断y是x的反比例函数吗? ★
(1)一个矩形的面积是20 ,相邻的两条边长分别为 (cm)和 (cm);
(2)某种大米的单价是2.2元/千克,当购买千克大米时,花费为元;
(3)京沪高速公路全长约为1262 km,汽车沿京沪高速公路从上海驶往北京,所需的时间为(h),行驶的平均速度为(km/h);
(4)一个圆柱的体积为120 ,它的高(cm)与底面半径(cm)之间的关系.
3、【综合题】 当 ______ 时, 是反比例函数. ☆
第2节 反比例函数的图象与性质
4、【基础题】下列各点中,不在反比例函数图象上的点是( ) ★★★
A. B. C. D.
4.1、【综合题】已知A(m+3,2)和B(3,)是同一个反比例图象上的两个点,求m的值. ☆
5、【基础题】下列函数中,其图象位于第一、三象限的有_______;在其所在象限内,的值随值的增大而增大
的有_______. ★★★
(1); (2) (3) (4)
5.1、【基础题】已知反比例函数的图象具有下列特征:在所在象限内,的值随的增大而增大,那么
的取值范围是 . ★★★
6、【基础题】已知点(-2,),(-1,)和(3,)都在反比例函数的图象上,比较、
与的大小. ★★★
6.1、【基础题】已知点A,B和C都在反比例函数的图象上,则,与的大
小关系为 . ★★★
6.2、【综合题】已知在反比例函数 (为常数)的图象上有(-3,),(-1,)和
(2,)三点,则,与的大小关系为 . ★
7、【基础题】如左下图,设P(m,n)是双曲线 上任意一点,过P作x轴的垂线,垂足为A,
则_____.
7.1【综合题】如右上图,反比例函数在第一象限内的图象如图所示,则的值可能是 ( ) ★
A. 1 B. 2 C. 3 D. 4
第3节 反比例函数的应用
8、【综合题】在同一直角坐标系中,函数y=kx-k与y= (k≠0)的图象大致是 ( ) ★★★
8.1【综合题】函数 ()与 ()在同一平面直角坐标系中的大致图象是( )
9、【综合题】如图,正比例函数的图象与反比例函数的图象相交于A,B两点,其中点A的坐标
为. (1)分别写出这两个函数的表达式;(2)求出点B的坐标. ★★★
9.1、【综合题】在同一坐标系内作出函数与函数的图象,并求出它们的图象的交点坐标. ★★★
9.2、【综合题】 如图,一次函数的图像与反比例函数的图像相交于A(-2,1)、B(1,)两点. ★★★
(1)求的值,并写出反比例函数和一次函数的解析式;
(2)写出使一次函数的值大于反比例函数的值的的取值范围.
10、【综合题】在同一直角坐标系中,正比例函数的图象与反比例函数的图象没有公共点,
则 _____ 0 (填“<”“>”“≤”“≥”) ★
10.1、【综合题】若一次函数 的图象与反比例函数 的图象有交点,求的取值范围. ★
本章复习
一、选择题
1、如果反比例函数的图像经过点(-3,-4),那么函数的图像应在( )
A. 第一、三象限 B. 第一、二象限
C. 第二、四象限 D. 第三、四象限
2、下列函数中y随x的增大而减小的是( )
A. B. C. D.
3、若反比例函数的图像在第二、四象限,则的值是( )
A. -1或1 B. 小于 的任意实数 C. -1 D. 不能确定
4、在函数y=(k<0)的图像上有A(1,y)、B(-1,y)、C(-2,y)三个点,则下列各式中正确的是( )
A. y 5、(2006绍兴)如图,正方形OABC和正方形ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函 数的图象上,则点E的坐标是 A.; B. C.; D. 二、填空题 6、如图是反比例函数在第一象限内的图象,点M是图像上一点,MP垂直轴于点P,如果△MOP的面积为1,那么的值是 _____ . 7、如果点(,)在双曲线上,那么双曲线在第_______象限. 8、对于函数,当时,的取值范围是________;当时且时,的取值范围是_______. 9、在同一平面直角坐标系中,若一个反比例函数的图象与一次函数的图象无公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可). 10、(2009莆田)如图,在x轴的正半轴上依次截取OA1=A1A2 =A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂 线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5, 得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设 其面积分别为S1、S2、S3、S4、S5,则S5的值为 . 三、解答题 11、已知一次函数 (为常数,且)与反比例函数 ()的图象交于A(2,4)和B(-4,)两点. (1)分别求出和的解析式; (2)写出=时的值; (3)写出>时的取值范围. 12、如图,Rt△ABO的顶点A是双曲线与直线在第二象限的交点,AB⊥轴于B, 且= (1)求这两个函数的解析式; (2)求△AOC的面积. 分节练习答案 第1节 反比例函数 答案 1、【答案】 ②③④⑦ 2、【答案】 (1), 是反比例函数. (2), 不是反比例函数,是一次函数,也是正比例函数. (3), 是反比例函数. (4), 不是反比例函数. 3、【答案】 第2节 反比例函数的图象与性质 答案 4、【答案】 选D 4.1【答案】 m=-6 5、【答案】 位于第一、三象限的有(1)(2)(3);在各象限内的值随值的增大而增大的有(4). 5.1、【答案】 6、【答案】 >> 6.1、【答案】 >> 6.2【答案】 >> 7、【答案】 3 7.1【答案】 选C 第3节 反比例函数的应用 答案 8、【答案】 选D 8.1【答案】 选A 9、【答案】(1)正比例函数表达式为,反比例函数表达式为; (2)(,) 9.1、【答案】 它们的图象有两个交点,分别是(2,1)和(-1,-2) 9.2【答案】 (1),反比例函数表达式为 ,一次函数表达式为 ; (2)﹤-2或0﹤﹤1 10、【答案】 <0 10.1【答案】 且 本章复习 答案 一、选择题答案 1、【答案】 选A 2、【答案】 选C 3、【答案】 选C 4、【答案】 选B 5、【答案】 选A 二、填空题答案 6、【答案】 2 7、【答案】 二、四 8、【答案】 ; 或. 9、【答案】(只要中的满足即可) 10、【答案】 S1=1,S2=S1=,S3=S1=,S4=S1=,S5=S1=. 三、解答题答案 11、【答案】 (1),; (2)的值为2或-4; (3)的取值范围是或 12、【答案】 (1) ,; (2)4.