当前位置:首页 > 九年级 > 数学

西华县2016-2017学年度九年级上期数学期末试卷及答案

试卷简介

这份试卷涵盖了九年级上学期的数学内容,包括一元二次方程、几何图形的性质、概率统计、函数及其图像等多个方面。题目类型多样,既有选择题也有填空题和解答题,旨在全面考查学生对数学知识的理解和应用能力。

所涉及的知识点

本试卷主要考察了初中数学中一元二次方程、几何图形性质、概率统计以及函数图像等多个方面的知识。重点在于通过实际问题的解决来检验学生对这些知识点的理解和应用能力。

2016—2017学年度上期期末调研

九年级 数 学

一、选择题 (每小题3分,共24分)

1.方程x2﹣4 = 0的解是  【 】

A.x = ±2 B.x = ±.x = 2 D. x =﹣2

2.下列图形中,不是中心对称图形的是  【 】

A. B. C. D.

3.下列说法中正确的是 【 】

A.“任意画出一个等边三角形,它是轴对称图形”是随机事件

B.“任意画出一个平行四边形,它是中心对称图形”是必然事件

C.“概率为0.0001的事件” ”是不可能事件

D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次

4.已知关于x的一元二次方程(a﹣1)x2﹣2x+1= 0有两个不相等的实数根,

则a的取值范围是  【 】

A.a>2 B.a <C. a <2且a ≠ l D.a <﹣2

5.三角板ABC中,∠ACB=90°,∠B=30°,AC=2,三角板

绕直角顶点C逆时针旋转,当点A的对应点A′ 落在AB边的

起始位置上时即停止转动,则B点转过的路径长为【 】

A.2π B. C. D.3π

6.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是【 】

A. 1 B. C. D.

7.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为 【 】

A.50° B.55° C.60° D.65°

8.如图,在边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE,

将线段CE绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的

最小值是  【 】

A.6 B..2 D.1.5

二、填空题( 每小题3分,共21分)

9.抛物线y = x2+2x+3的顶点坐标是      .

10.m是方程2x2+3x﹣1= 0的根,则式子++2016的值为      .

11.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为

直线      .

12.在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是r =      .

第12题图

13.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是      .

14.矩形ABCD中,AD = 8,半径为5的⊙O与BC相切,且经过A、D两点,则AB = .

15.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,

E为边AB的中点,点D是BC边上的动点,把△ACD

沿AD翻折,点C落在C′处,若△AC′E是直角三角形,

则CD的长为      .

三、解答题:(本大题共8个小题,满分75分)

16.(8分)先化简,再求值:

17.(9分)已知关于x的方程x2+ax+a﹣2=0.

(1)当该方程的一个根为1时,求a的值及该方程的另一根;

(2)求证:不论a取何实数,该方程都有两个不相等的实数根.

18.(9分)如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,

∠ACB的平分线交⊙O于点D,连接AD.

(1)求直径AB的长;

(2)求图中阴影部分的面积.(结果保留π)

19.(9分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.

(1)现随机转动转盘一次,停止后,指针指向1的概率为      ;

(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?

请用列表或画树状图的方法说明理由.

20.(9分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以O为圆心,OA为半径的⊙O经过点D.

(1)求证:BC是⊙O的切线;

(2)若BD=5,DC=3,求AC的长.

21.(10分)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化需上调第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.

(1)若设第二个月的销售定价每套增加x元,填写表格:

(2)若商店预计要在第二个月的销售中获利2000元,则第二个月销售定价每套多少元?

(3)若要使第二个月利润达到最大,应定价为多少元?此时第二个月的最大利润是多少?

22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合).以AD为边做正方形ADEF,连接CF.

(1)如图①,当点D在线段BC上时,求证:CF+CD=BC;

(2)如图②,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF、BC、CD三条线段之间的关系;

(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其他条件不变;

①请直接写出CF、BC、CD三条线段之间的关系;

②若正方形ADEF的边长为,对角线AE、DF相交于点O,连接OC.求OC的长度.

23.(11分)如图①,抛物线与x轴交于点A(,0),B(3,0),与y轴交于点C,连接BC.

(1)求抛物线的表达式;

(2)抛物线上是否存在点M,使得△MBC的面积与△OBC的面积相等,若存在,请直接写出点M的坐标;若不存在,请说明理由;

(3)点D(2,m)在第一象限的抛物线上,连接BD.在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P的坐标;如果不存在,请说明理由.

九年级数学2016—2017学年度上期期末参考答案及评分标准

选择题(每题3分 共24分)

填空题

9.(- 1,2) 10.2018  11.x =2  12.R   13.10  14.2或8  15.2或

三、解答题

16.解:原式= ……………………3分

=

= ……………………5分

∵,∴ ……………………7分

∴原式=. ……………………8分

17.解:(1)把x=1代入方程x2+ax+a﹣2=0,解得:a=,……………………2分

∴原方程即是,

解此方程得:,

∴a=,方程的另一根为; ……………………5分

(2)证明:∵,

不论a取何实数,≥0,∴,即>0,

∴不论a取何实数,该方程都有两个不相等的实数根. ……………………9分

18.解:(1)∵AB是⊙O的直径,

∴∠ACB=90°,∵∠B=30°,∴AB=,设AC的长为x,

则AB=2x,在Rt△ACB中,,∴

解得x=,∴AB=. ……………………5分

(2)连接OD.∵CD平分∠ACB,∴∠ACD=45°,

∴∠AOD=90°,

AO=AB=,

∴S△AOD =

S 扇AOD =

∴S阴影 = ……………………9分

19.解:(1)根据题意得:随机转动转盘一次,停止后,

指针指向1的概率为; ……………………3分

(2)列表得:

所有等可能的情况有9种,其中两数之积为偶数的情况有5种,之积为奇数的情况有4种,

……………………7分

∴P(小明获胜)= ,P(小华获胜)=,

∵>,

∴该游戏不公平. ……………………9分

20.(1)证明:连接OD;∵AD是∠BAC的平分线,

∴∠1=∠3.∵OA=OD,∴∠1=∠2.∴∠2=∠3.

∴OD∥AC.∴∠ODB=∠ACB=90°.

∴OD⊥BC.∴BC是⊙O切线. ……………………4分

(2)解:过点D作DE⊥AB,

∵AD是∠BAC的平分线,

∴CD=DE=3.

在Rt△BDE中,∠BED=90°,

由勾股定理得:,

在Rt△AED和Rt△ACD中,,∴Rt△AED ≌ Rt△ACD

∴AC=AE,设AC=x,则AE=x,AB=x+4,在Rt△ABC中 ,

即,解得x=6,∴AC=6. ……………………9分

21.解:(1)若设第二个月的销售定价每套增加x元,由题意可得,

……………………4分

(2)若设第二个月的销售定价每套增加x元,根据题意得:

(52+x﹣40)(180﹣10x)=2000,

解得:x1=﹣2(舍去),x2=8,

当x=8时,52+x=52+8=60.

答:第二个月销售定价每套应为60元. ……………………7分

(3)设第二个月利润为y元.

由题意得到:y=(52+x﹣40)(180﹣10x)

=﹣10x2+60x+2160

=﹣10(x﹣3)2+2250

∴当x=3时,y取得最大值,此时y=2250,

∴52+x=52+3=55,

即要使第二个月利润达到最大,应定价为55元,此时第二个月的最大利润

是2250元. ……………………10分

22.

证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,

∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,

∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,∴∠BAD=∠CAF,

则在△BAD和△CAF中,

∴△BAD ≌ △CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;

…………………… 4分

(2)CFCD=BC …………………… 5分

(3)①CDCF =BC. …………………… 6分

②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,

∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,

∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,

则在△BAD和△CAF中,

∴△BAD ≌ △CAF(SAS),∴∠ABD=∠ACF,∵∠ABC=45°,∠ABD=135°,

∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.

∵正方形ADEF的边长为且对角线AE、DF相交于点O,

∴DF=AD=4,O为DF中点.

∴OC=DF=2. ……………………10分

23.解:(1)∵抛物线与x轴交于点A(,0),B(3,0),

,解得,

∴抛物线的表达式为.……………………3分

(2)存在.M1(,),M2(,)

……………………5分

(3)存在.如图,设BP交轴y于点G.

∵点D(2,m)在第一象限的抛物线上,

∴当x=2时,m=.

∴点D的坐标为(2,3).

把x=0代入,得y=3.

∴点C的坐标为(0,3).

∴CD∥x轴,CD = 2.

∵点B(3,0),∴OB = OC = 3

∴∠OBC=∠OCB=45°.

∴∠DCB=∠OBC=∠OCB=45°,又∵∠PBC=∠DBC,BC=BC,

∴△CGB ≌ △CDB(ASA),∴CG=CD=2.

∴OG=OCCG=1,∴点G的坐标为(0,1).

设直线BP的解析式为y=kx+1,将B(3,0)代入,得3k+1=0,解得k=.

∴直线BP的解析式为y=x+1. ……………………9分

令x+1=.解得,.

∵点P是抛物线对称轴x==1左侧的一点,即x<1,∴x=.把x=代入抛物线中,解得y=

∴当点P的坐标为(,)时,满足∠PBC=∠DBC.……………………11分

不用注册,免费下载!

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:47116 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握