当前位置:首页 > 九年级 > 数学

鄂州市鄂城区九年级下学期期中数学试题及答案

试卷简介

这份试卷涵盖了九年级数学的主要内容,包括代数、几何以及实际应用问题。题目涉及一元二次方程、三角函数、图形性质、概率统计等多个方面,旨在全面考察学生的数学知识掌握情况及应用能力。

所涉及的知识点

这份试卷主要考查学生对代数方程、几何图形性质、三角函数及其应用的理解和运用能力。

[来源:学#科#网]

九年级数学参考答案

选择题:ADADB CCCBB

填空题:11.x≥0且x≠1 12. 2; 13. 2/3; 14.+1 15. ;16 7/20.

以下所给分值为每步分值。

解答题:17. 1/(x—2)……, 当x=2+ 原式=/2……

(1)△=4—4(a —2) = 4— + 8 = 12 —>0 ∴a < 3;……

当x = 1时 1+2+a —2 = 0, a =—1;[来源:学科网ZXXK]

X2+2x —3 = 0 (x+3)(x—1)=0 x =—3或x=1;∴a =—1,另一根为—3.……

(1)略……;(2)∠B=300。……

(1) 1/4;……(2)1/3;……

21:(1)如图,过点C作CG⊥AB于点G,DF⊥CG于点F,则在Rt△CBG中,由题意知∠CBG=30°,∴CG=BC=,

∵∠DAG=90°,∴四边形ADFG是矩形,

∴GF= AD=1.5 ,∴CF= CGGF=7.5-1.5=6,

在Rt△CDF中,∠CFD=90º,

∵∠DCF =53°,∴cos∠DCF= ,

∴(海里).答:CD两点距离为.…… ……

(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=1.5×2×t=3t, ∠EDC=53°, 过点E作EH⊥CD于点H, 则∠EHD=∠CHE=90º,

∴sin∠EDH=, ∴EH=EDsin53°=

∴在Rt△EHC中,sin∠ECD=.答:sin∠ECD=.

…………

22题解答: (1)证明:连结OD,如图,∵EF=ED,∴∠EFD=∠EDF,

∵∠EFD=∠CFO,∴∠CFO=∠EDF,

∵OC⊥OF,∴∠OCF+∠CFO=90°,

而OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,

∴OD⊥DE,∴DE是⊙O的切线;…………

(2)解:∵OF:OB=1:3,∴OF=1,BF=2,设BE=x,则DE=EF=x+2,

∵AB为直径,∴∠ADB=90°,∴∠ADO=∠BDE,

而∠ADO=∠A,∴∠BDE=∠A,

而∠BED=∠DAE,∴△EBD∽△EDA,∴==,即==,

∴x=2,∴==.…………

解:(1)当1≤x<50时y =(200—2x)(x+40—30) = —2x2+180x+2000.

当50≤x≤90时y =(200—2x)(90—30) = —120x +12000

∴ …………

当1≤x<50时,当x=45时,y最大=6000,该商品第45天时,最大利润为6050元。…………

当1≤x<50时,y = —2x2+180x+2000≥4800解得20≤x≤70.

∴20≤x<50 ,共30天[来源:学.科.网Z.X.X.K]

当50≤x≤90时,y = —120x+12000≥4800 ,解得x≤60∴50≤x≤60,共11天。

∴共41天。…………

24题答案:⑴.根据题意: 解得:

∴抛物线的解析式为

∵本抛物线的对称轴为,且抛物线过点A(1,0)[来源:学科网]

∴把分别代入 得: 解得:

∴直线的解析式为…………

⑵.设直线BC与对称轴的交点为,则此时的值最小.把代入得:.∴,即当点到点的距离与到点C的距离之和最小时的坐标为.…………

⑶.设,又

∴[来源:学科网ZXXK]

①.若点为直角顶点,则,即 解得:;

②.若点为直角顶点,则,即 解得:;

③.若点为直角顶点,则,即 解得:,

综上所述点的坐标为或或或

…………

不用注册,免费下载!

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:47157 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握