当前位置:首页 > 八年级 > 数学

八年级上人教新课标期中考试试卷13--数学

试卷简介

这份试卷是针对人教新课标八年级第一学期期中考试的数学试卷。试卷内容涵盖了平面直角坐标系、等腰三角形性质、轴对称图形、全等三角形的判定和性质、勾股定理的应用等多个知识点。题目类型包括填空题、选择题以及证明题,旨在全面考察学生对初中数学基础知识的理解和应用能力。

所涉及的知识点

本试卷主要考察了平面直角坐标系、等腰三角形性质、轴对称图形的识别、全等三角形的判定和性质、勾股定理的应用等初中数学基础知识点。

人教新课标八年级第一学期期中考试

数学试卷13

一.填空题:(每小题3分,共30分)

|3.14-|=___________.

在平面直角坐标系内点P(-3,a)与点Q(b,-1)关于y轴对称,则a+b的值为_________.

等腰三角形的一个角是96,则它的另外两个角的度数是 。

请你写出3个字(可以是数字、字母、汉字)要求它们都是轴对称图形_____、 ___ 、__.

如图,AC=BD,要使ΔABC≌ΔDCB,只要添加一个条件___________________.

如图,ΔABC中,AB=AC=,AB的垂直平分线MN交AC于D,ΔDBC的周长是,则BC=___________.

如图,ΔABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则ΔABD的面积为____________.

如图,把锐角ΔABC绕点C顺时针旋转至ΔCDE处,且点E恰好落在AB上,若∠ECB=40°,则∠AED=____________.

如图,在ΔABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,若AD=,则CD=___________.

10.观察下列各式: ……请你将发现的规律用含n (n1的整数)的等式表示出来___________________________.

二.选择题:(每小题3分,共18分)

11.在3.14, ,,,,,3.141141114……中,无理数的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个

12. 一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是( )

13. 如图,在∠AOB的两边上截取AO=BO ,OC=OD,连接AD、BC交于点P,连接OP,则图中全等三角形共有( )对;

A. 2 B. . 4 D. 5

14.下列语句:① 的算术平方根是4 ② ③ 平方根等于本身的数是0和1 ④ =,其中正确的有( )个

A. 1 B. . 3 D. 4

15.如图,ΔABC是不等边三角形,DE=BC,以D、E为两个端点作位置不同的三角形,使所作三角形与ΔABC全等,这样的三角形最多可以画出( )个。

A. 2 B. . 6 D. 8

16.如图,在ΔABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长为( )

A. 1 B. . 3 D. 4

三.(16题62分,17、18题各7分,共20分)

17.若+∣x+3y-13∣=0,求x+y的平方根。

18.如图,已知BE⊥AD,CF⊥AD,且BE=CF,请你判断AD是ΔABC的中线还是角平分线?请说明你的理由.

19.如图,分别以直角ΔABC的直角边AC、BC为边,在ΔABC外作两个等边三角形ΔACE和ΔBCD,连接BE、AD. 求证:BE=AD

四.(每小题8分,共24分)

20.如图,已知∠ACB=∠ADB=90°,AC=AD,E在AB上,连接CE、DE

(1) 请你找出与点E有关的所有全等的三角形。

(2)选择(1)中的一对全等三角形加以证明。

21.如图,在△ABC中,∠C=90°,AC=BC,点D在BC上,且∠BAD=15°.

(1)求∠CAD的度数;(2)若AC=,BD=,求AD的长.

22. 如图,已知,EG∥AF,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。并证明这个命题(只写出一种情况)①AB=AC ②DE=DF ③BE=CF

已知:EG∥AF,_______,_________.

求证:___________.

证明:

五.(每小题9分,共18分)

23.如图,阴影部分是由5个大小相同的小正方形组成的图形,请分别在图中方格内涂两个小正方形,使涂后所得阴影部分图形是轴对称图形。

24. 如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.

(1)求证:△DEF是等腰三角形;

(2)当∠A=40°时,求∠DEF的度数;

(3)△DEF可能是等腰直角三角形吗?为什么?

六.(10分)

学完“轴对称”这一章后,老师布置了一道思考题:如图所示,点M,N分别在等边△ABC的BC、CA边上,且BM=CN,AM,BN交于点Q,求证:∠BQM=60°.

(1)请你完成这道思考题:

(2)做完(1)后,同学们在老师的启发下进行了反思,提出许多问题,如:

①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60?

③若将题中的条件“点M,N分别在正三角形ABC的BC、CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?……请你作出判断,在下列横线上填写“是”或“否”:

①________;②_______;③________.并对②,③的判断,选择一个画出图形,并给出证明.

参考答案

一.1. -3.14 2. 2 3. 4. 答案不唯一 5. AB=DC或 6. 7. 5 8. 9. 10.

二.11. D 12. A 13. C 14. A 15. B 16. A

三.17.

18. 中线

19. 证

四.20. ⑴

⑵ 略

⑵ AD=-2n

五.23. 略

24. ⑴ 证 得DE=FE

⑶ 不可能,因为,不可能为90

六.⑴ 略

⑵ ① 是 ② 是 ③ 是 证明略

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:41154 获取网盘提取码
前往网盘下载
点击下载文档
解决的问题
还需要掌握