2013-2014学年八年级[上]数学期末考试试卷
一.选择题(共10小题)
1.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
3.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=,F是高AD和BE的交点,则BF的长是( )
4.(2010•海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是( )
5.(2013•珠海)点(3,2)关于x轴的对称点为( )
6.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=,△ADC的周长为,则BC的长为( )
7.(2013•新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
8.(2013•烟台)下列各运算中,正确的是( )
9.(2012•西宁)下列分解因式正确的是( )
10.(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是( )
二.填空题(共10小题)
11.(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是 _________ .
12.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= _________ 度.
13.(2013•枣庄)若,,则a+b的值为 _________ .
14.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n= _________ .
15.(2013•菏泽)分解因式:2﹣12ab+12b2= _________ .
16.(2013•盐城)使分式的值为零的条件是x= _________ .
17.(2013•南京)使式子1+有意义的x的取值范围是 _________ .
18.(2012•茂名)若分式的值为0,则a的值是 _________ .
19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简: _________ .
20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是 _________ .
三.解答题(共8小题)
21.(2013•遵义)已知实数a满足a2+﹣15=0,求﹣÷的值.
22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.
23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,an=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).
(1)探究an是否为8的倍数,并用文字语言表述你所获得的结论;
(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,an,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,an为完全平方数(不必说明理由).
24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:
①∠AED+∠AFD=180°;②DE=DF.
那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:
(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.
(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)
25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.
(1)求证:AB⊥ED;
(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.
27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.
(1)当CM与AB垂直时,求点M运动的时间;
(2)当点A′落在△ABC的一边上时,求点M运动的时间.
28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,
(1)如图1,若∠ACD=60°,则∠AFB= _________ ;如图2,若∠ACD=90°,则∠AFB= _________ ;如图3,若∠ACD=120°,则∠AFB= _________ ;
(2)如图4,若∠ACD=α,则∠AFB= _________ (用含α的式子表示);
(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.
2013-2014学年八年级[上]数学期末考试试卷
参考答案与试题解析
一.选择题(共10小题)
1.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
3.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=,F是高AD和BE的交点,则BF的长是( )
4.(2010•海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是( )
5.(2013•珠海)点(3,2)关于x轴的对称点为( )
6.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=,△ADC的周长为,则BC的长为( )
7.(2013•新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
8.(2013•烟台)下列各运算中,正确的是( )
9.(2012•西宁)下列分解因式正确的是( )
10.(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是( )
二.填空题(共10小题)
11.(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是 1+ .
12.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.
13.(2013•枣庄)若,,则a+b的值为 .
14.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n= 3 .
15.(2013•菏泽)分解因式:2﹣12ab+12b2= 3(a﹣2b)2 .
16.(2013•盐城)使分式的值为零的条件是x= ﹣1 .
17.(2013•南京)使式子1+有意义的x的取值范围是 x≠1 .
18.(2012•茂名)若分式的值为0,则a的值是 3 .
19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简: .
20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是 .
三.解答题(共8小题)
21.(2013•遵义)已知实数a满足a2+﹣15=0,求﹣÷的值.
22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.
23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,an=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).
(1)探究an是否为8的倍数,并用文字语言表述你所获得的结论;
(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,an,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,an为完全平方数(不必说明理由).
24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:
①∠AED+∠AFD=180°;②DE=DF.
那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:
(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.
(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)
25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.w W w .
(1)求证:AB⊥ED;
(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.
27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.
(1)当CM与AB垂直时,求点M运动的时间;
(2)当点A′落在△ABC的一边上时,求点M运动的时间.
28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,
(1)如图1,若∠ACD=60°,则∠AFB= 120° ;如图2,若∠ACD=90°,则∠AFB= 90° ;如图3,若∠ACD=120°,则∠AFB= 60° ;
(2)如图4,若∠ACD=α,则∠AFB= 180°﹣α (用含α的式子表示);
(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.