第十二章 全等三角形检测题
(本检测题满分:100分,时间:90分钟)
一、选择题(每小题3分,共30分)
1.(2014·江西南昌中考)如图所示,下列条件中,不能判断的是( )
A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC
2. 如图所示,分别表示△ABC的三边长,则下面与△一定全等的三角形是( )
A B
C D
3.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列等式不正确的是( )
A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE
4.在△ABC和△中,AB=,∠B=∠,补充条件后仍不一定能保证△ABC≌
△,则补充的这个条件是( )
A.BC= B.∠A=∠
C.AC= D.∠C=∠
5.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是( )
A.△ACE≌△BCD B.△BGC≌△AFC
C.△DCG≌△ECF D.△ADB≌△CEA
6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )
A.边角边 B.角边角 C.边边边 D.边边角
7.如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是( )
A.∠A与∠D互为余角
B.∠A=∠2
C.△ABC≌△CED
D.∠1=∠2
8.在△和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条
件( )
A.AB=ED B.AB=FD
C.AC=FD D.∠A=∠F
9.如图所示,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,其中一定正确的是( )
A.①②③ B.②③④ C.①③⑤ D.①③④
10. 如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等( )
A.∥ B. C.∠=∠ D.∠=∠
二、填空题(每小题3分,共24分)
11. (2014·福州中考)如图所示,在Rt△ABC中,
∠ACB90,点D,E分别是边AB,AC的中点,
延长BC到点F,使CF BC .若AB10,则EF
的长是 .
12.如图所示,在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是 .
13.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .
14.如图所示,已知在等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE= 度.
15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .
16.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=,BD=,那么点D到直线AB的距离是 cm.
17.如图所示,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是 .
18.如图所示,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC= ,则△DEB的周长为 cm.
三、解答题(共46分)
19.(6分)(2014·福州中考)如图所示,点E,F在BC上,BECF,ABDC,∠B∠C.求证:∠A∠D.
20.(8分)如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.
21.(6分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.
求证:(1)EC=BF;(2)EC⊥BF.
22.(8分) 如图所示,在△ABC中,∠C=90°, AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.证明:(1)CF=EB;(2)AB=AF+2EB.
23.(9分)如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.
24.(9分)(2014•湖南邵阳中考)如图所示,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)从图中任找两组全等三角形;
(2)从(1)中任选一组进行证明.
5. D 解析:∵ △ABC和△CDE都是等边三角形,
∴ BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴ ∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,
∴ 在△BCD和△ACE中,
∴ △BCD≌△ACE(SAS),故A成立.
∵ △BCD≌△ACE,∴ ∠DBC=∠CAE.
∵ ∠BCA=∠ECD=60°,∴ ∠ACD=60°.
在△BGC和△AFC中,∴ △BGC≌△AFC,故B成立.
∵ △BCD≌△ACE,∴ ∠CDB=∠CEA,
在△DCG和△ECF中,∴ △DCG≌△ECF,
故C成立.
6. B 解析:∵ BF⊥AB,DE⊥BD,∴ ∠ABC=∠BDE.
又∵ CD=BC,∠ACB=∠DCE,∴ △EDC≌△ABC(ASA).
故选B.
7. D 解析:∵ AC⊥CD,∴ ∠1+∠2=90°. ∵ ∠B=90°,∴ ∠1+∠A=90°,
∴ ∠A=∠2.
在△ABC和△CED中, ∴ △ABC≌△CED,故选项B、C正确. ∵ ∠2+∠D=90°,
∴ ∠A+∠D=90°,故选项A正确. ∵ AC⊥CD,∴ ∠ACD=90°,∠1+∠2=90°,故选项D错误.故选D.
8. C 解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED.
9. D 解析:∵ AB=AC,∴ ∠ABC=∠ACB. ∵ BD平分∠ABC,CE平分∠ACB,
∴ ∠ABD=∠CBD=∠ACE=∠BCE. ∴ ①△BCD≌△CBE (ASA);
由①可得CE=BD, BE=CD,∴ ③△BDA≌△CEA (SAS);
又∠EOB=∠DOC,所以④△BOE≌△COD (AAS).故选D.
10. C 解析:A.∵ ∥,∴ ∠=∠. ∵ ∥∴ ∠=∠. ∵ ,∴ △≌△,故本选项可以证出全等. B.∵ =,∠=∠,
∴ △≌△,故本选项可以证出全等. C.由∠=∠证不出△≌△,故本选项不可以证出全等. D.∵ ∠=∠,∠=∠,,
∴ △≌△,故本选项可以证出全等.故选C.
11.5 解析:根据三角形的中位线性质定理和全等三角形的判定与性质进行解答.
∵ 点D,E分别是边AB,AC的中点,
∴ AE=CE=AC,DE是△ABC的中位线,∴ DE=BC,DE∥BC.
∵ CFBC ,∴ DE=CF.
又∵ ∠AED=∠ECF=90°,
∴ △ADE≌△EFC,∴ EF=AD=AB=5.
12.
因为
所以△BDE≌△CDA.所以
在△ABE中,
.
13. 135° 解析:观察图形可知:△ABC≌△BDE,
∴ ∠1=∠DBE.
又∵ ∠DBE+∠3=90°,∴ ∠1+∠3=90°.
∵ ∠2=45°,∴ ∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.
14. 60 解析:∵ △ABC是等边三角形,
∴ ∠ABD=∠C,AB=BC.∵ BD=CE,
∴ △ABD≌△BCE,∴ ∠BAD=∠CBE.
∵ ∠ABE+∠EBC=60°,∴ ∠ABE+∠BAD=60°,
∴ ∠APE=∠ABE+∠BAD=60°.
15. 55° 解析:在△ABD与△ACE中,
∵ ∠1+∠CAD=∠CAE +∠CAD,∴ ∠1=∠CAE.
又∵ AB=AC,AD=AE,
∴ △ABD ≌△ACE(SAS).∴ ∠2=∠ABD.
∵ ∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,
∴ ∠3=55°.
16. 3 解析:如图所示,作DE⊥AB于E,因为∠C=90°,AD平分∠CAB,
所以点D到直线AB的距离是DE的长.
由角平分线的性质可知DE=DC.
又BC=,BD=,所以DE=DC=.
所以点D到直线AB的距离是.
解析:如图所示,作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,
∵ OB,OC分别平分∠ABC和∠ACB,OD⊥BC,
∴ OD=OE=OF.
∴
=×OD×BC+×OE×AC+×OF×AB
=×OD×(BC+AC+AB)
=×3×21=31.5.
18. 15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,
所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,
所以△ADC≌△EDC,所以AD=DE, AC=EC,
所以△DEB的周长=BD+DE+BE=BD+AD+BE.
又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=BC=15(cm).
19.分析:由已知BECF证得BFCE,从而根据三角形全等SAS的判定,证明△ABF≌△DCE,再利用全等三角形的对应角相等得出结论.
证明:∵ BECF,∴ BEEFCFEF, 即BFCE.
又∵ ABDC,∠B∠C, ∴ △ABF≌△DCE. ∴ ∠A∠D.
点拨:一般三角形全等的判定方法有:SAS,ASA,AAS,SSS,证明三角形全等时,要根据题目已知条件灵活选用.
20.分析:由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.
解:∵ △ABC≌△ADE, ∴ ∠DAE=∠BAC=(∠EAB-∠CAD)=, ∴ ∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°, ∠DGB=∠DFB-∠D=90°-25°=65°.
21. 分析:首先根据角之间的关系推出再根据边角边定理,证明△≌
△,最后根据全等三角形的性质定理,得知.根据角的转换可求出.
证明:(1)因为 ,
所以. 又因为 在△与△中,错误!未指定书签。所以△≌△. 所以.
(2)因为△≌△,
所以,
即
22. 分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB.
(2)利用角平分线的性质证明△ADC≌△ADE,∴ AC=AE,再将线段AB进行转化.
证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.
又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),
∴ CF=EB. (2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴ △ADC≌△ADE,∴ AC=AE,
∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
23. 证明:∵ DB⊥AC ,CE⊥AB,
∴ ∠AEC=∠ADB=90°.
∴ 在△ACE与△ABD中,
∴ △ACE≌△ABD (AAS),∴ AD=AE.
∴ 在Rt△AEF与Rt△ADF中,
∴ Rt△AEF≌Rt△ADF(HL),
∴ ∠EAF=∠DAF,∴ AF平分∠BAC.
24. 分析:(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.
解:(1)△ABE≌△CDF,△AFD≌△CEB.
(2)选△ABE≌△CDF进行证明.
∵ AB∥CD,∴ ∠1=∠2.
∵ AF=CE,∴ AF+EF=CE+EF, 即AE=FC,
在△ABE和△CDF中,
∴ △ABE≌△CDF(AAS).
点拨:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS.注意:AAA,SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
x_k_b_1