2008~2009学年度第一学期九年级数学周测试题
(试卷满分100分 考试时间45分钟)
一、选择题(本大题共4小题,每小题3分,共12分)
1.二次函数与x轴的交点个数是( ) A.0 B..2 D.3
2.把抛物线向上平移2个单位, 在向右平移3个单位,则所得的抛物线是( )
A. B. C. D.
3.下列表格是二次函数的自变量与函数值的对应值,判断方程(为常数)的一个解的范围是( )
A. B. C. D.
4.如图,抛物线的对称轴是直线,且经过点P(3,0),
则的值为( )
A.0 B.-. 1 D. 2
二、填空题(本大题共6小题,每小题4分,共24分)
5.若是二次函数,则m= .
6.抛物线的顶点坐标是 .
7.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的关系式为 y=(x-2)2+3等 .
8.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t—5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行___________m才能停直来.
9.已知抛物线与x轴交点的横坐标为 -1,则= .
10.已知抛物线,若点(,5)与点关于该抛物线的对称轴对称,则点的坐标是 .
三、解答题(本大题共4小题,每小题7分,共28分)
11.用配方法或公式法求二次函数的对称轴、最值.
12.已知抛物线的顶点在轴上,求这个函数的关系式及其顶点坐标.
13.已知二次函数的图象的顶点坐标为(3,-2)且与轴交与(0,)
(1)求函数的关系式,并画出它的图象;
(2)当为何值时,随增大而增大.
14.已知一条抛物线过点和,且它的对称轴为直线,试求这条抛物线的关系式.
四、解答题(本大题共4小题,其中第15、16题每题8分,第17、18题每题10分,共36分)
15.某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP=,喷出的水流的最高点A距水平面的高度是,到柱子OP的距离为.
(1)求这条抛物线的关系式;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外.
16.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克.
(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,则每千克应涨价多少元?
(2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.
17.农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长的墙,设计了如图一个矩形的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由.
18.二次函数的图象与x轴从左到右两个交点依次为A、B,与y轴交于点C,
(1)求A、B、C三点的坐标;
(2)如果P(x,y)是抛物线AC之间的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)是否存在这样的点P,使得PO=PA,若存在,求出点P的坐标;若不存在,说明理由.