当前位置:首页 > 九年级 > 数学

数学九年级上浙教版4.2相似三角形同步练习4

试卷简介

这份试卷主要围绕相似三角形的知识点展开,涵盖了相似三角形的定义、相似比、识别方法以及相关性质的应用。试卷通过多个例题和习题来考察学生对这些概念的理解及应用能力,涉及到了图形的分割、比例线段、面积转化等多个方面的问题。

所涉及的知识点

相似三角形的识别方法及性质的应用。

4.2 相似三角形 同步练习

重点、难点:

1. 通过探索两个三角形相似的识别方法,加强合情推理能力的培养,感受发现的乐趣,逐步掌握说理的基本方法。

2. 通过相似三角形性质复习,丰富与角、面积等相关的知识方法,开阔研究角、面积等问题的视野。

【知识纵横】

1. 相似三角形

对应角相等,对应边成比例的三角形叫做相似三角形(similar triangles)。

议一议:

(1)两个全等三角形一定相似吗?为什么?

(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?

(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?

2. 相似比

相似三角形对应边的比叫做相似比。

说明:相似比要注意顺序:如△ABC∽△A'B'C'的相似比,而△A'B'C'∽△ABC的相似比,这时。

3. 相似三角形的识别

(1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似。

(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。

【典型例题】

例1. 如图,∠1=∠2=∠3,图中相似三角形有( )对。

答:4对

例2. 如图,已知:△ABC、△DEF,其中∠A=50°,∠B=60°,∠C=70°,∠D=40°,∠E=60°,∠F=80°,能否分别将两个三角形分割成两个小三角形,使△ABC所分成的每个三角形与△DEF所分成的每个三角形分别对应相似?

如果可能,请设计一种分割方案;若不能,说明理由。

解:

例3. (2004·广东省)如图所示,四边形ABCD是平行四边形,点F在BA的延长线上,连结CF交AD于点E。

(1)求证:△CDE∽△FAE;

(2)当E是AD的中点,且BC=2CD时,求证:∠F=∠BCF。

命题意图:相似三角形的识别、特征在解题中的应用。

解析:由AB∥DC得:∠F=∠DCE,∠EAF=∠D

∴△CDE∽△FAE

,又E为AD中点

∴DE=AE,从而CD=FA,结合已知条件,易证

BF=BC,∠F=∠BCF

解:(1)∵四边形ABCD是平行四边形

∴AB∥CD

∴∠F=∠DCE,∠EAF=∠D

∴△CDE∽△FAE

(2)∵E是AD中点,∴DE=AE

由(1)得:

∴CD=AF

∵四边形ABCD是平行四边形

∴AB=CD

∴AB=CD=AF

∴BF=2CD,又BC=2CD

∴BC=BF

∴∠F=∠BCF

思路探究:平行往往是证两个三角形相似的重要条件,利用比例线段也可证明两线段相等。

例4. 在梯形ABCD中,∠A=90°,AD∥BC,点P在线段AB上从A向B运动,

(1)是否存在一个时刻使△ADP∽△BCP;

(2)若AD=4,BC=6,AB=10,使△ADP∽△BCP,则AP的长度为多少?

解:(1)存在

(2)若△ADP∽△BCP,则

∴AP长度为4或6

例5. 如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE、BE、BD,且AE、BD交于点F,则( )

A. 4:10:25 B. 4:9:25

C. 2:3:5 D. 2:5:25

(2001年黑龙江省中考题)

思路点拨:运用与面积相关知识,把面积比转化为线段比。

∴选A

例6. 如图,有一批形状大小相同的不锈钢片,呈直角三角形,已知∠C=90°,AB=5cm,BC=3cm,试设计一种方案,用这批不锈钢片裁出面积达最大的正方形不锈钢片,并求出这种正方形不锈钢片的边长。

思路点拨:要在三角形内裁出面积最大的正方形,那么这正方形所有顶点应落在△ABC的边上,先画出不同方案,把每种方案中的正方形边长求出。

解:如图甲,设正方形EFGH边长为x,则AC=4

而CD×AB=AC×BC=,得

又△CEH∽△CAB,得

于是,解得:

如图乙,设正方形CFGH的边长为y cm

由GH∥AC,得:

即,解得:

即应如图乙那样裁剪,这时正方形面积达最大,它的边长为

例7. 如图,已知直角梯形ABCD中,∠A=∠B=90°,设,,作DE⊥DC,DE交AB于点E,连结EC。

(1)试判断△DCE与△ADE、△DCE与△BCE是否分别一定相似?若相似,请加以证明。

(2)如果不一定相似,请指出a、b满足什么关系时,它们就能相似?

解:(1)△DCE与△ADE一定相似,△DCE与△BCE不一定相似,分别延长BA、CD交于F点

由△FAD∽△FBC,得:

于是FD=DC,从而可证△FED≌△CED

得∠AED=∠DEC

所以△DEC∽△AED

(2)作CG⊥AD交AD延长线于G,

由△AED∽△GDC,有,得

要使△DCE与△BCE相似,那么一定成立

即,得

也就是当时,△DCE与△BCE一定相似。

【模拟试题】(答题时间:40分钟)

1. 如图,已知DE∥BC,CD和BE相交于O,若,则AD:DB=____________。

2. 如图,△ABC中,CE:EB=1:2,DE∥AC,若△ABC的面积为S,则△ADE的面积为____________。

3. 若正方形的4个顶点分别在直角三角形的3条边上,直角三角形的两直角边的长分别为3cm和4cm,则此正方形的边长为____________。

(2000年武汉市中考题)

4. 阅读下面的短文,并解答下列问题:

我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体。

如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比:,设分别表示这两个正方体的表面积,则,又设分别表示这两个正方体的体积,则。

(1)下列几何体中,一定属于相似体的是( )

A. 两个球体 B. 两个圆锥体

C. 两个圆柱体 D. 两个长方体

(2)请归纳出相似体的3条主要性质:

①相似体的一切对应线段(或弧)长的比等于____________;

②相似体表面积的比等于____________;

③相似体体积的比等于____________。

(2001年江苏省泰州市中考题)

5. 如图,铁道口的栏杆短臂长1 m,长臂长16 m,当短臂端点下降0.5 m时,长臂端点升高( )

A. 11.25 m B. 6.6 m C. 8 m D. 10.5 m

6. 如图,D为△ABC的边AC上的一点,∠DBC=∠A,已知,△BCD与△ABC的面积的比是2:3,则CD的长是( )

A. B. C. D.

7. 如图,在正三角形ABC中,D、E分别在AC、AB上,且,AE=BE,则有( )

A. △AED∽△BED B. △AED∽△CBD

C. △AED∽△ABD D. △BAD∽△BCD

(2001年杭州市中考题)

8. 如图,已知△ABC中,DE∥FG∥BC,且AD:FD:FB=1:2:3,则等于( )

A. 1:9:36 B. 1:4:9

C. 1:8:27 D. 1:8:36

9. 如图,已知梯形ABCD中,AD∥BC,∠ACD=∠B,求证:

10. 如图,△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F。

(1)求证:△ABC∽△FCD;

(2)若,求DE的长。

(2000年河北省中考题)

11. 阅读并解答问题。

在给定的锐角△ABC中,求作一个正方形DEFG,使D、E落在BC上,F、G分别落在AC、AB边上,作法如下:

第一步:画一个有3个顶点落在△ABC两边上的正方形D'E'F'G'。

第二步:连结BF',并延长交AC于点F;

第三步:过F点作FE⊥BC于E;

第四步:过F点作FG∥BC交AB于点G;

第五步:过G点作GD⊥BC于点D。

四边形DEFG即为所求作的四边形DEFG,为正方形。

问题:

(1)证明上述所求作的四边形DEFG为正方形;

(2)在△ABC中,如果,∠BAC=75°,求上述正方形DEFG的边长。

(江苏省扬州市中考题)

12. 如图,在△ABC中,,在BC上有100个不同的点,过这100个点分别作△ABC的内接矩形…,设每个内接矩形的周长分别为,则

____________。

(安徽省竞赛题)

13. 如图,在△ABC中,DE∥FG∥BC,GI∥EF∥AB,若△ADE、△EFG、△GIC的面积分别为,则△ABC的面积为____________。

14. 如图,一个边长为3、4、5厘米的直角三角形的一个顶点与正方形的顶点B重合,另两个顶点分别在正方形的两条边AD、DC上,那么这个正方形的面积是____________厘米2。

(第11届“希望杯”邀请赛试题)

15. 如图,将一个矩形纸片ABCD沿AD和BC的中点连线对折,要使矩形AEFB与原矩形相似,则原矩形的长与宽的比为( )

A. 2:1 B. C. D. 1:1

16. 如图,梯形ABCD中,AB∥CD,且CD=3AB,EF∥CD,EF将梯形ABCD分成面积相等的两部分,则AE:ED等于( )

A. 2 B. C. D.

【试题答案】

1. 3:1

2.

3. 或

4. (1)A;(2)相似比;相似比的平方;相似比的立方

5. C 6. C 7. B 8. C

9. 由△ABC∽△DCA,得

10. (1)略

(2)过A作AM⊥BC于M

由△ABC∽△FCD,得:

又,得

∵DE∥AM,

,得

11. (1)易证明四边形EFGD为矩形,由,而,得EF=GF,故四边形EFGD为正方形。

(2)过A作AQ⊥BC于Q交GF于P,且AQ=BQ,∠BCA=60°,∠QAC=30°,,又

即,解得

由,得

12. 400

提示:从内接一个矩形入手,探求内接△ABC中任一矩形的长与宽的关系。

13.

提示:

14.

解:设,则

由△BCE∽△EDF,得

又,即

15. C

16. C

提示:延长DA、CB相交于G,

设,则

无限免费下载试卷
Word文档没有任何密码等限制使用的方式,方便收藏和打印
已有人下载。
×
扫码关注公众号
二维码
扫描公众号,私信暗号:46608 获取网盘提取码
前往网盘下载
点击下载文档
还需要掌握